1252 字
6 分钟
9.2 二重积分的计算

§\S9.2 二重积分的计算#

一、直角坐标系下的计算#

定义:

  • X型区域:axba\le x \le bφ1(x)yφ2(x)\varphi_1(x)\le y \le \varphi_2(x)

  • Y型区域:cydc\le y \le dψ1(y)xψ2(y)\psi_1(y)\le x\le \psi_2(y)

V曲顶=Df(x,y)dxdy=abA(x)dx\displaystyle V_{曲顶}=\iint_Df(x,y)\mathrm dx \mathrm dy=\int_a^bA(x)\mathrm dx

A(x)=φ1(x0)φ2(x0)f(x,y)dy\displaystyle A(x)=\int_{\varphi_1(x_0)}^{\varphi_2(x_0)}f(x,y)\mathrm dy

V曲柱=Df(x,y)dσ=ab[φ1(x)φ2(x)f(x,y)dy]dx\displaystyle \therefore V_{曲柱}=\iint_D f(x,y)\mathrm d\sigma=\int_a^b\left[\int_{\varphi_1(x)}^{\varphi_2(x)}f(x,y)\mathrm dy\right]\mathrm dx

定理:

  • D为X型区域【先y后x】:Df(x,y)dxdy=abdxφ1(x)φ2(x)f(x,y)dy\displaystyle \iint_D f(x,y)\mathrm dx \mathrm dy=\int_a^b \mathrm dx \int_{\varphi_1(x)}^{\varphi_2(x)}f(x,y)\mathrm dy
  • D为Y型区域【先x后y】:Df(x,y)dxdy=cddyψ1(y)ψ2(y)f(x,y)dx\displaystyle \iint_D f(x,y)\mathrm dx \mathrm dy=\int_c^d \mathrm dy \int_{\psi_1(y)}^{\psi_2(y)}f(x,y)\mathrm dx

例题#

  1. Ddσ\displaystyle \iint_D \mathrm d\sigma,其中 D 为 y=2xy=2xx=2yx=2yx+y=3x+y=3 围成的区域

    • X 型区域

      I=01dxx22x1dy+12dxx23xdy=01(2xx2)dx+12(3xx2)dx=32\begin{align*} I&=\int_0^1 \mathrm dx \int_{\frac{x}{2}}^{2x} 1 \mathrm dy+ \int_1^2 \mathrm dx \int_{\frac{x}{2}}^{3-x}\mathrm dy\\ &=\int_0^1 (2x-\dfrac{x}{2})\mathrm dx + \int_1^2(3-x-\dfrac{x}{2})\mathrm dx\\ &=\dfrac{3}{2} \end{align*}
    • Y型区域

      I=01dyy22y1dx+12dyy23y1dx=32\begin{align*} I&=\int_0^1 \mathrm dy \int_{\frac{y}{2}}^{2y} 1 \mathrm dx + \int_1^2 \mathrm dy \int_{\frac{y}{2}}^{3-y} 1 \mathrm dx\\ &=\dfrac{3}{2} \end{align*}
  2. 计算 Dxydσ\displaystyle \iint_D xy \mathrm d\sigma,其中 D 为 y2=xy^2=xy=x2y=x-2 围成的区域

    • X型区域:

      I=01dxxxxydy+14dxx2xxydy=01(x12y2xx)dx+14x12[x(x2)2]dx=458\begin{align*} I&=\int_0^1 \mathrm dx \int_{-\sqrt{x}}^{\sqrt{x}} xy \mathrm dy + \int_1^4 \mathrm dx \int_{x-2}^{\sqrt{x}} xy \mathrm dy\\ &=\int_0^1 (x\cdot \dfrac{1}{2}y^2|_{-\sqrt{x}}^{\sqrt{x}}) \mathrm dx + \int_1^4 x\cdot \dfrac{1}{2}[x-(x-2)^2] \mathrm dx\\ &=\dfrac{45}{8} \end{align*}
    • Y型区域:

      I=12dyy2y+2xydx=12y(y+2)2y42dy=458\begin{align*} I&=\int_{-1}^2 \mathrm dy \int_{y^2}^{y+2}xy \mathrm dx \\ &=\int_{-1}^2 y\cdot \dfrac{(y+2)^2-y^4}{2} \mathrm dy\\ &=\dfrac{45}{8} \end{align*}
  3. 计算 Dsinxxdxdy\displaystyle \iint_D \dfrac{\sin x}{x}\mathrm dx \mathrm dy,其中 D 为 y=xy=xy=x2y=x^2 所围成的区域

    I=01dxx2xsinxxdy=01sinxx(xx2)dx=1sin1\begin{align*} I&=\int_0^1 \mathrm dx \int_{x^2}^x \dfrac{\sin x}{x} \mathrm dy\\ &=\int_0^1 \dfrac{\sin x}{x} (x-x^2) \mathrm dx\\ &=1-\sin 1 \end{align*}

    注:本题用Y型积分会卡住

  4. 交换积分次序

    • 12dy1yydx\displaystyle \int_1^2 \mathrm dy \int_{\frac{1}{y}}^y \mathrm dx,积分区域 D:1y21\le y\le 21yxy\dfrac{1}{y}\le x\le y

      原式 =121dx1x2f(x,y)dy+12dxx2f(x,y)dy\displaystyle =\int_{\frac{1}{2}}^1 \mathrm dx \int_{\frac{1}{x}}^2 f(x,y)\mathrm dy+\int_1^2 \mathrm dx \int_x^2 f(x,y)\mathrm dy

    • 01dx02xx2f(x,y)dy+12dx02xf(x,y)dy\displaystyle \int_0^1 \mathrm dx \int_0^{\sqrt{2x-x^2}}f(x,y)\mathrm dy+\int_1^2 \mathrm dx\int_0^{2-x}f(x,y)\mathrm dy

      区域为 0x20\le x\le 2(x1)2+y21(x-1)^2+y^2\le 1y2xy\le 2-x

      原式 =01dy11y22yf(x,y)dx\displaystyle =\int_0^1 \mathrm dy\int_{1-\sqrt{1-y^2}}^{2-y}f(x,y)\mathrm dx

  5. 证明 [abf(x)g(x)dx]2[abf2(x)dx][abg2(x)dx]\displaystyle \left[\int_a^bf(x)g(x) \mathrm dx\right]^2\le \left[\int_a^b f^2(x)\mathrm dx\right]\left[\int_a^b g^2(x)\mathrm dx\right]

    • 法一:ab[f(x)±tg(x)]2dx0\displaystyle \int_a^b [f(x)\pm tg(x)]^2 \mathrm dx\ge 0

      t2abg2(x)dx+t2abf(x)g(x)dx+abf2(x)dx0Δ=[2abf(x)g(x)]24[abg2(x)dx][abf2(x)dx]\begin{align*} t^2 \int_a^b g^2(x)\mathrm dx + t\cdot 2\int_a^b f(x)g(x)\mathrm dx + \int_a^b f^2(x)\mathrm dx\ge 0\\ \Delta = [2\int_a^b f(x)g(x)]^2 - 4[\int_a^b g^2(x)\mathrm dx][\int_a^b f^2(x)\mathrm dx] \end{align*}

      整理可得原式

    • 法二

      =[abf(x)g(x)dx][abf(y)g(y)dy]=Df(x)g(x)f(y)g(y)dxdy(D:axb,ayb)\begin{align*} 左 &=[\int_a^b f(x)g(x) \mathrm dx][\int_a^b f(y)g(y) \mathrm dy]\\ &=\iint_D f(x)g(x)f(y)g(y) \mathrm dx \mathrm dy\\ &(D: a\le x\le b, a\le y \le b) \end{align*} =[abf2(x)dx][abg2(y)dy]=Df2(x)g2(y)dxdy=Df2(y)g2(x)dxdy\begin{align*} 右 &=[\int_a^b f^2(x)\mathrm dx][\int_a^b g^2(y) \mathrm dy]\\ &=\iint_D f^2(x)g^2(y) \mathrm dx \mathrm dy \\ &=\iint_D f^2(y)g^2(x) \mathrm dx \mathrm dy \end{align*}

      22=D[f(x)g(y)f(y)g(x)]2dxdy0\displaystyle 2右-2左=\iint_D[f(x)g(y)-f(y)g(x)]^2 \mathrm dx \mathrm dy\ge 0,得证

二、极坐标系下的计算#

Δσi=Δθi2[(ρi+Δρi)2ρi2]=2ρi+Δρi+Δρi22Δθi=2ρi+Δρi2ΔρiΔθi=ρi+(ρi+Δρi)2ΔρiΔθiρiΔρiΔθi\begin{align*} \Delta \sigma_i &=\dfrac{\Delta \theta_i}{2}\left[(\rho_i+\Delta \rho_i)^2-\rho_i^2\right]\\ &=\dfrac{2\rho_i+\Delta \rho_i+\Delta \rho_i^2}{2}\Delta \theta_i\\ &=\dfrac{2\rho_i+\Delta \rho_i}{2}\Delta \rho_i\Delta \theta_i\\ &=\dfrac{\rho_i+(\rho_i+\Delta \rho_i)}{2}\Delta \rho_i\Delta \theta_i\\ &\approx \rho_i\Delta \rho_i\Delta \theta_i \end{align*}dσ=ρdρdθ\begin{align*} \therefore d\sigma = \rho \mathrm d\rho \mathrm d\theta \end{align*}Df(x,y)dσ=Df(ρcosθ,ρsinθ)ρdρdθ(D:αθβ,ϕ1(θ)ρϕ2(θ))=αβdθϕ1(θ)ϕ2(θ)f(ρcosθ,ρsinθ)ρdρ\begin{align*} \iint_Df(x,y)\mathrm d\sigma &= \iint_D f(\rho \cos\theta, \rho\sin \theta)\rho \mathrm d\rho \mathrm d\theta(D: \alpha\le \theta\le \beta, \phi_1(\theta)\le \rho \le \phi_2(\theta))\\ &=\int_{\alpha}^{\beta}\mathrm d\theta \int_{\phi_1(\theta)}^{\phi_2(\theta)}f(\rho\cos\theta,\rho\sin\theta) \mathrm \rho \mathrm d\rho \end{align*}

例题#

  1. I=D1dσ\displaystyle I=\iint_D 1\cdot \mathrm d\sigma,其中 D:x2+y22RxD:x^2+y^2\le 2Rx

    • 法一

      I=02Rdx2Rxx22Rxx2dy=202R2Rxx2dx=πR2\begin{align*} I&=\int_0^{2R} \mathrm dx \int_{-\sqrt{2Rx-x^2}}^{\sqrt{2Rx-x^2}} \mathrm dy\\ &=2\int_0^{2R}\sqrt{2Rx-x^2} \mathrm dx \\ &=\pi R^2 \end{align*}
    • 法二

      I=π2π2dθ02Rcosθ1ρdρ=π2π2(2Rcosθ)22dθ=πR2\begin{align*} I&=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \mathrm d\theta \int_0^{2R\cos\theta} \cdot 1 \cdot \rho \mathrm d\rho\\ &=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \dfrac{(2R\cos\theta)^2}{2} \mathrm d\theta\\ &=\pi R^2 \end{align*}
  2. I=Dx2dσ\displaystyle I=\iint_D x^2 \mathrm d\sigma,其中 D:x2+y21D:x^2+y^2\le 1

    • 法一

      I=02πdθ01ρ2cos2θρdρ=(02πcos2θdθ)(01ρ3dρ)=π4\begin{align*} I&=\int_0^{2\pi} \mathrm d\theta\int_0^1\rho^2 \cos^2\theta \rho \mathrm d\rho\\ &=(\int_0^{2\pi}\cos^2\theta \mathrm d\theta)(\int_0^1 \rho^3 \mathrm d\rho)\\ &=\dfrac{\pi}{4} \end{align*}
    • 法二:D关于 y=xy=x 对称

      Dx2dσ=Dy2dσ=12D(x2+y2)dσ=12(02πdθ)(01ρ2ρdρ)=12×2π×14=π4\begin{align*} \iint_D x^2 \mathrm d\sigma &= \iint_D y^2 \mathrm d\sigma \\ &= \dfrac{1}{2} \iint_D (x^2+y^2) \mathrm d\sigma \\ &=\dfrac{1}{2} (\int_0^{2\pi} \mathrm d\theta)(\int_0^1 \rho^2 \rho \mathrm d\rho)\\ &=\dfrac{1}{2}\times 2\pi \times \dfrac{1}{4}\\ &=\dfrac{\pi}{4} \end{align*}
  3. Df(x,y)dxdy\displaystyle \iint_D f(x,y) \mathrm dx \mathrm dy 化为二次积分,其中 D:0x1,1xy1x2D:0\le x\le 1, 1-x\le y\le \sqrt{1-x^2}

    原式=01dx1x1x2f(x,y)dxdy=0π2dθ1cosθ+sinθ1f(ρcosθ,ρsinθ)ρdρ\begin{align*} 原式 &= \int_0^1 \mathrm dx \int_{1-x}^{\sqrt{1-x^2}} f(x,y) \mathrm dx \mathrm dy\\ &=\int_0^{\frac{\pi}{2}} \mathrm d\theta \int_{\frac{1}{\cos\theta + \sin\theta}}^1f(\rho\cos\theta, \rho\sin\theta)\rho \mathrm d\rho \end{align*}
  4. Df(x2+y2,2xy)dσ\displaystyle \iint_D f(\sqrt{x^2+y^2}, 2xy) \mathrm d\sigma 化为二次积分,其中 D:0x3,xy3xD:0\le x\le 3,-x\le y\le \sqrt{3}x

    I=03dxx3xf(x2+y2,2xy)dy=30dyy3f(x2+y2,2xy)dx+033dy33y3f(x2+y2,2xy)dx=π4π3dθ03cosθf(ρ,ρ2sin2θ)ρdρ\begin{align*} I&=\int_0^3 \mathrm dx \int_{-x}^{\sqrt{3}x}f(\sqrt{x^2+y^2}, 2xy) \mathrm dy\\ &=\int_{-3}^{0} \mathrm dy \int_{-y}^3 f(\sqrt{x^2+y^2}, 2xy) \mathrm dx + \int_0^{3\sqrt{3}} \mathrm dy \int_{\frac{\sqrt{3}}{3}y}^3 f(\sqrt{x^2+y^2}, 2xy) \mathrm dx\\ &=\int_{-\frac{\pi}{4}}^{\frac{\pi}{3}} \mathrm d\theta \int_0^{\frac{3}{\cos\theta}}f(\rho, \rho^2\sin 2\theta)\rho \mathrm d\rho \end{align*}
  5. 计算 Dx2ydxdy\displaystyle \iint_D |x^2-y| \mathrm dx \mathrm dy,其中D为 x=0x=0x=1x=1y=0y=0y=1y=1 所围成的区域

    I=D1(x2y)dxdy+D2(yx2)dxdy=01dx0x2(x2y)dy+01dxx21(yx2)dy=1130\begin{align*} I&=\iint_{D_1}(x^2-y) \mathrm dx \mathrm dy + \iint_{D_2}(y-x^2) \mathrm dx \mathrm dy\\ &=\int_0^1 \mathrm dx \int_0^{x^2}(x^2-y) \mathrm dy + \int_0^1 \mathrm dx \int_{x^2}^1 (y-x^2) \mathrm dy\\ &=\dfrac{11}{30} \end{align*}
  6. f(x,y)=xy+Df(x,y)dxdy\displaystyle f(x,y)=xy+\iint_Df(x,y)\mathrm dx \mathrm dy,其中D为 y=0y=0y=x2y=x^2x=1x=1 所围区域,求 f(x,y)f(x,y)

    解:设 f(x,y)=xy+Cf(x,y)=xy+C

    Df(x,y)dxdy=Dxydxdy+DCdxdy\displaystyle \iint_D f(x,y) \mathrm dx \mathrm dy = \iint_D xy \mathrm dx \mathrm dy + \iint_D C \mathrm dx \mathrm dy

    C=Dxydxdy+CDdxdyC=\displaystyle \iint_{D} xy \mathrm dx \mathrm dy + C\iint_{D} \mathrm dx \mathrm dy

    I1=Dxydxdy=01dx0π2xydy=112\displaystyle I_1=\iint_{D} xy \mathrm dx \mathrm dy = \int_0^1 \mathrm dx \int_0^{\pi^2} xy \mathrm dy = \dfrac{1}{12}

    I2=Ddxdy=01dx011dy=13\displaystyle I_2=\iint_{D} \mathrm dx \mathrm dy = \int_0^1 \mathrm dx \int_0^1 \mathrm 1dy=\dfrac{1}{3}

    C=18\therefore C=\dfrac{1}{8}

  7. Df(xy,x2+y2)dxdy\displaystyle \iint_D f(xy,x^2+y^2) \mathrm dx \mathrm dy,其中D为 y=kx(k>0)y=kx(k\gt 0)x2+y22ax=0(a>0)x^2+y^2-2ax=0(a\gt 0) 所围成的包含圆心的部分

    I=π2arctankdθ02acosθf(ρ2cosθsinθ,ρ2)ρdρ\begin{align*} I=\int_{-\frac{\pi}{2}}^{\arctan k} \mathrm d\theta \int_0^{2a\cos \theta}f(\rho^2 \cos\theta \sin\theta, \rho^2) \rho \mathrm d\rho \end{align*}
  8. 01dyyyf(x,y)dx\displaystyle \int_0^1 \mathrm dy \int_{-y}^{\sqrt{y}}f(x,y) \mathrm dx 化为极坐标系下二次积分

    I=0π4dθ0tanθcosθf(x,y)ρdρ+π43π4dθ01sinθf(x,y)ρdρ\begin{align*} I&=\int_0^{\frac{\pi}{4}} \mathrm d\theta \int_0^{\frac{\tan\theta}{\cos\theta}}f(x,y)\rho \mathrm d\rho + \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}\mathrm d\theta\int_0^{\frac{1}{\sin\theta}}f(x,y)\rho \mathrm d\rho \end{align*}
  9. 计算 Dex2y2dσ\displaystyle \iint_D e^{-x^2-y^2} \mathrm d\sigma,其中 D:x2+y2a2D:x^2+y^2\le a^2

    解:

    I=02πdθ0aeρ2ρdρ=(02πdθ)(0aeρ2ρdρ)=2π(12)0aeρ2d(ρ2)=1ea2\begin{align*} I&=\int_0^{2\pi}\mathrm d\theta \int_0^a e^{-\rho^2} \rho \mathrm d\rho \\ &=(\int_0^{2\pi} \mathrm d\theta)(\int_0^a e^{-\rho^2} \rho \mathrm d\rho)\\ &=2\pi(-\dfrac{1}{2})\int_0^a e^{-\rho^2}\mathrm d(-\rho^2)\\ &=1-e^{-a^2} \end{align*}

    由此可证明 0+ex2dx=π2\displaystyle \int_0^{+\infty} e^{-x^2} \mathrm dx = \dfrac{\sqrt{\pi}}{2}

    证:0+ex2dx=limu+0uex2dx\displaystyle \int_0^{+\infty}e^{-x^2} \mathrm dx = \lim_{u\to +\infty} \int_0^u e^{-x^2} \mathrm dx

    0uex2dx=Iu\displaystyle \int_0^u e^{-x^2} \mathrm dx = I_u

    I1=D1ex2y2dxdy=π4(1ea2)\displaystyle I_1=\iint_{D_1} e^{-x^2-y^2} \mathrm dx \mathrm dy = \dfrac{\pi}{4}(1-e^{-a^2})(D1为第I象限以a为半径的四分之一圆区域)

    Iu2=(0uexdx)(0ueydy)=Duex2y2dxdy=D1ex2y2dxdy+Dex2y2dxdy0\begin{align*} I_u^2&=(\int_0^u e^{-x}\mathrm dx)(\int_0^ue^{-y}\mathrm dy)\\ &=\iint_{D_u}e^{-x^2-y^2}\mathrm dx \mathrm dy \\ &=\iint_{D_1}e^{-x^2-y^2}\mathrm dx \mathrm dy + \iint_{D_补}e^{-x^2-y^2}\mathrm dx \mathrm dy \ge 0 \end{align*}

    Iu2I1I_u^2\ge I_1

    π4(1eu2)Iu2π4(1e2u2)\dfrac{\pi}{4}(1-e^{-u^2}) \le I_u^2 \le \dfrac{\pi}{4}(1-e^{-2u^2})

    I2=D2ex2y2dxdy\displaystyle I_2=\iint_{D_2} e^{-x^2-y^2} \mathrm dx \mathrm dyD2:x[0,2u],y[0,2u]D_2: x\in [0,\sqrt{2}u], y\in [0,\sqrt{2}u]

    lima+Iu2=π4\therefore\displaystyle \lim_{a\to +\infty}I_u^2 = \dfrac{\pi}{4}0+ex2dx=limu+Iu=π2\displaystyle \int_0^{+\infty}e^{-x^2}\mathrm dx=\lim_{u\to +\infty}I_u = \dfrac{\sqrt{\pi}}{2}

  10. 计算 x2+y2=azx^2+y^2=azz=2ax2+y2z=2a-\sqrt{x^2+y^2} 所围成的体积

    两曲面交线为 {x2+y2=a2z=a\begin{cases}x^2+y^2=a^2\\z=a\end{cases},投影为 x2+y2=a2x^2+y^2=a^2

    V=D(2ax2+y2x2+y2a)dxdy=02πdθ0a(2aρρ2a)ρdρ=56πa3\begin{align*} V&=\iint_D(2a-\sqrt{x^2+y^2}-\dfrac{x^2+y^2}{a})\mathrm dx \mathrm dy\\ &=\int_0^{2\pi} \mathrm d\theta \int_0^a(2a-\rho-\dfrac{\rho^2}{a})\rho \mathrm d\rho\\ &=\dfrac{5}{6}\pi a^3 \end{align*}

三、换元公式#

{x=x(u,v)y=y(u,v),dσ=dxdy\begin{align*} \begin{cases} x=x(u,v)\\ y=y(u,v) \end{cases}, \mathrm d\sigma = \mathrm dx \mathrm dy \end{align*}

Df(x,y)dxdy=Df(x(u,v),y(u,v))J(u,v)dudv\displaystyle \iint_D f(x,y)\mathrm dx \mathrm dy = \iint_D f(x(u,v),y(u,v))|J(u,v)| \mathrm du \mathrm dv

其中 J(u,v)=xuxvyuyvJ(u,v)=\begin{vmatrix}\dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix}

{x=ρcosθy=ρsinθ\begin{cases}x=\rho\cos\theta\\y=\rho\sin\theta \end{cases} 时,J(ρ,θ)=xρxθyρyθ=ρJ(\rho,\theta)=\begin{vmatrix}\dfrac{\partial x}{\partial \rho} & \dfrac{\partial x}{\partial \theta} \\ \dfrac{\partial y}{\partial \rho} & \dfrac{\partial y}{\partial \theta} \end{vmatrix}=\rho

广义极坐标变换:{x=aρcosθy=bρsinθ(a,b,ρ>0)\begin{cases}x=a\rho\cos\theta\\y=b\rho\sin\theta\end{cases}(a,b,\rho \gt 0)

Df(x,y)dxdy=Df(aρcosθ,bρsinθ)abρdρdθ\displaystyle \iint_D f(x,y)\mathrm dx \mathrm dy = \iint_D f(a\rho\cos\theta, b\rho\sin\theta)ab\rho \mathrm d\rho \mathrm d\theta

例题#

求椭圆 x2a2+y2b2=1\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 的面积(a>0a\gt 0b>0b\gt 0

解:

  • 法一:S=40ab(1x2a2)dx=πab\displaystyle S=4\int_0^a \sqrt{b(1-\dfrac{x^2}{a^2})}\mathrm dx=\pi ab
  • 法二:{x=aρcosθy=bρsinθ\begin{cases}x=a\rho\cos\theta\\y=b\rho\sin\theta \end{cases}
S=Ddσ=02πdθ011abρdρ=2πab12=πab\begin{align*} S&=\iint_D \mathrm d\sigma \\ &=\int_0^{2\pi} \mathrm d\theta \int_0^1 1\cdot ab \rho \mathrm d\rho\\ &=2\pi \cdot ab \cdot \dfrac{1}{2}\\ &=\pi ab \end{align*}

D:(xa)2+(yb)2R2D:(x-a)^2+(y-b)^2\le R^2 求法:

{x=a+ρcosθy=b+ρsinθ\begin{cases}x=a+\rho\cos\theta\\y=b+\rho\sin\theta \end{cases}J(ρ,θ)=ρ|J(\rho,\theta)|=\rho

I=02πdθ0Rf(a+ρcosθ,b+ρsinθ)ρdρ\displaystyle I=\int_0^{2\pi}\mathrm d\theta \int_0^R f(a+\rho\cos\theta, b+\rho\sin\theta)\rho \mathrm d\rho

9.2 二重积分的计算
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00