720 字
4 分钟
8.7 方向导数和梯度

§\S8.7 方向导数和梯度#

一、方向导数#

  • 定义1:设 llxOyxOy 平面上以 (x0,y0)(x_0,y_0) 为起点的一条射线,其中 el=(cosα,cosβ)\vec {e_l}=(\cos \alpha,\cos \beta) 是与 ll 同方向的单位向量,则射线 ll 的参数方程为 {x=x0+ρcosαy=y0+ρcosβ(ρ0)\begin{cases} x=x_0+\rho \cos \alpha\\ y=y_0+\rho \cos \beta \end{cases} (\rho \ge 0)
  • 定义2:z=f(x,y)z=f(x,y)U(P0)U(P_0) 有定义,P(x0+ρcosα,y0+ρcosβ)P(x_0+\rho \cos\alpha,y_0+\rho \cos\beta) 为射线 ll 上一点,且 PU(P0)P\in U(P_0)。若 f(x0+ρcosα,y0+ρcosβ)f(x0,y0)f(x_0+\rho \cos\alpha,y_0+\rho \cos\beta)-f(x_0,y_0)PP0=ρ|PP_0|=\rho 的比值在 ρ0+\rho\to 0^+ 下极限存在,则称此极限为 f(x,y)f(x,y)P0P_0 沿射线 ll 的方向导数存在,记作 fl(x0,y0)\dfrac{\partial f}{\partial l}|_{(x_0,y_0)}fn(x0,y0)\dfrac{\partial f}{\partial \vec{n}}|_{(x_0,y_0)}
  • 方向导数与偏导数的关系 fl(x0,y0)=limρ0+f(x0+ρcosα,y0+ρcosβ)f(x0,y0)ρfx=limρ0+f(x0ρ,y0)f(x0,y0)ρ=ρ=Δxlimρ0+f(x0+Δx,y0)f(x0,y0)Δx=fx\begin{align*} \dfrac{\partial f}{\partial l}|_{(x_0,y_0)}&=\lim_{\rho\to0^+}\dfrac{f(x_0+\rho\cos\alpha,y_0+\rho\cos\beta)-f(x_0,y_0)}{\rho} \\ \dfrac{\partial f}{\partial x^-}&=\lim_{\rho\to0^+}\dfrac{f(x_0-\rho,y_0)-f(x_0,y_0)}{\rho}\\&\overset{-\rho=\Delta x}{=}\lim_{\rho\to0^+}\dfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{-\Delta x}\\ &=-\dfrac{\partial f}{\partial x} \end{align*}
    • fy+=fy\dfrac{\partial f}{\partial y^+}=\dfrac{\partial f}{\partial y}fy=fy\dfrac{\partial f}{\partial y^-}=-\dfrac{\partial f}{\partial y}
    • 若偏导存在,则 ff 沿 x,y,zx,y,z 的方向导数存在
  • 定理:可微→方向导数存在
    • 证明:可微 → f(x0+Δx,y0+Δy)f(x0,y0)=fx(x0,y0)Δx+fy(x0,y0)Δy+o((Δx)2+(Δy)2)f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)=f_x(x_0,y_0)\Delta x+f_y(x_0,y_0)\Delta y+o(\sqrt{(\Delta x)^2+(\Delta y)^2}),取 Δx=ρcosα\Delta x=\rho\cos\alphaΔy=ρcosβ\Delta y=\rho\cos\beta

      $$
      \begin{align*}
      \dfrac{\partial f}{\partial l}|_{(x_0,y_0)}&=\lim_{\rho \to 0^+}\dfrac{f(x_0+\rho\cos\alpha,y_0+\rho\cos\beta)-f(x_0,y_0)}{\rho}\\
      &=\lim_{\rho \to 0^+}\dfrac{[f_x(x_0,y_0)\rho\cos\alpha+f_y(x_0,y_0)\rho\cos\beta]+o(\rho)}{\rho}\\
      &=f_x(x_0,y_0)\cos\alpha+f_y(x_0,y_0)\cos\beta
      \end{align*}
      $$
    • fl(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ\dfrac{\partial f}{\partial l}|_{(x_0,y_0)}=f_x(x_0,y_0)\cos \alpha+f_y(x_0,y_0)\cos \beta

    • fl(x0,y0,z0)=fx(x0,y0,z0)cosα+fy(x0,y0,z0)cosβ+fz(x0,y0,z0)cosγ\dfrac{\partial f}{\partial l}|_{(x_0,y_0,z_0)}=f_x(x_0,y_0,z_0)\cos \alpha+f_y(x_0,y_0,z_0)\cos \beta+f_z(x_0,y_0,z_0)\cos \gammael=(cosα,cosβ,cosγ)=1ll\vec{e_l}=(\cos\alpha,\cos\beta,\cos\gamma)=\dfrac{1}{|\vec{l}|}\vec{l}

例题#

  1. 讨论 z=x2+y2z=\sqrt{x^2+y^2}(0,0)(0,0) 的方向导数情况

    解:el=(cosα,cosβ)\vec{e_l}=(\cos\alpha,\cos\beta)

    fl(0,0)=limρ0+f(0+ρcosα,0+ρcosβ)f(0,0)ρ=limρ0+ρ0ρ=1fx+(0,0)=fx(0,0)=1\begin{align*} \dfrac{\partial f}{\partial l}|_{(0,0)}&=\lim_{\rho \to 0^+}\dfrac{f(0+\rho\cos\alpha,0+\rho\cos\beta)-f(0,0)}{\rho}\\ &=\lim_{\rho \to 0^+}\dfrac{\rho-0}{\rho}=1\\ \dfrac{\partial f}{\partial x^+}|_{(0,0)}=\dfrac{\partial f}{\partial x^-}|_{(0,0)}=1 \end{align*}
  2. f={xyx2+y2sin1x2+y2x2+y200x2+y2=0f=\begin{cases}\dfrac{xy}{\sqrt{x^2+y^2}}\sin\dfrac{1}{x^2+y^2}\quad x^2+y^2\ne0\\0\quad x^2+y^2=0\end{cases},讨论偏导性、方向导数情况

    解:fx(0,0)=fy(0,0)=0f_x(0,0)=f_y(0,0)=0

    fl(0,0)=limρ0+ρcosαρcosβρsin1ρ2ρ=limρ0+cosαcosβsin1ρ2\begin{align*} \dfrac{\partial f}{\partial l}|_{(0,0)}&=\lim_{\rho \to 0^+}\dfrac{\frac{\rho\cos\alpha \rho\cos\beta}{\rho}\sin\frac{1}{\rho^2}}{\rho}\\ &=\lim_{\rho \to 0^+}\cos\alpha\cos\beta\sin\dfrac{1}{\rho^2} \end{align*}

    cosα=0\cos\alpha=0cosβ=0\cos\beta=0 时,极限存在

    cosα0\cos\alpha\ne 0cosβ0\cos\beta \ne 0 时,极限不存在,方向导数也不存在

    fx+=fx=fy+=fy=0\dfrac{\partial f}{\partial x^+}=\dfrac{\partial f}{\partial x^-}=\dfrac{\partial f}{\partial y^+}=\dfrac{\partial f}{\partial y^-}=0

  3. f(x,y,z)=x2cosy+eyln(x+z)f(x,y,z)=x^2\cos y+e^{-y}\ln(x+z),求其在 (1,0,2)(-1,0,2) 处沿该点到 (1,2,1)(1,2,1) 方向的方向导数

    解:fx(1,0,2)=2×(1)×cos0+e011+2=1f_x|_{(-1,0,2)}=2\times(-1)\times\cos 0+e^{-0}\dfrac{1}{-1+2}=-1fy(1,0,2)=0f_y|_{(-1,0,2)}=0fz(1,0,2)=1f_z|_{(-1,0,2)}=1

    MM0=(2,2,1)\vec{MM_0}=(2,2,-1)

    el=(23,23,13)\vec{e_l}=(\dfrac{2}{3},\dfrac{2}{3},-\dfrac{1}{3})

    fl(1,0,2)=1×23+0×23+1×(13)=1\dfrac{\partial f}{\partial l}|_{(-1,0,2)}=-1\times\dfrac{2}{3}+0\times\dfrac{2}{3}+1\times(-\dfrac{1}{3})=-1

  4. n\vec {n}2x2+3y2+z2=62x^2+3y^2+z^2=6P0(1,1,1)P_0(1,1,1) 处指向外侧的法向量,求 u=6x2+8y2zu=\dfrac{\sqrt{6x^2+8y^2}}{z}P0P_0 处沿 n\vec{n} 的方向导数

    解:ux(1,1,1)=614u_x(1,1,1)=\dfrac{6}{\sqrt{14}}uy(1,1,1)=814u_y(1,1,1)=\dfrac{8}{\sqrt{14}}uz(1,1,1)=14u_z(1,1,1)=-\sqrt{14}

    12n=(2,3,1)\dfrac{1}{2}\vec{n}=(2,3,1)en=(214,814,114)\vec{e_n}=(\dfrac{2}{\sqrt{14}},\dfrac{8}{\sqrt{14}},\dfrac{1}{\sqrt{14}})

    fn(1,1,1)=614×214+814×31414×114=117\dfrac{\partial f}{\partial \vec{n}}|_{(1,1,1)}=\dfrac{6}{\sqrt{14}}\times\dfrac{2}{\sqrt{14}}+\dfrac{8}{\sqrt{14}}\times\dfrac{3}{\sqrt{14}}-\sqrt{14}\times\dfrac{1}{\sqrt{14}}=\dfrac{11}{7}

  5. f(x,y)={xy2x2+y4x2+y200x2+y2=0f(x,y)=\begin{cases}\dfrac{xy^2}{x^2+y^4} \quad x^2+y^2\ne0\\0\quad x^2+y^2=0\end{cases},求 ff(0,0)(0,0) 处沿任意方向的方向导数

    解:

    fl(0,0)=limρ0+ρcosαρ2cosβρ2cos2α+ρ4cos4β0ρ=limρ0+cosαcosβcos2α+ρ2cos4β\begin{align*} \dfrac{\partial f}{\partial l}|_{(0,0)}&=\lim_{\rho \to 0^+}\dfrac{\frac{\rho\cos\alpha\rho^2\cos\beta}{\rho^2\cos^2\alpha+\rho^4\cos^4\beta}-0}{\rho}\\ &=\lim_{\rho \to 0^+}\dfrac{\cos\alpha\cos\beta}{\cos^2\alpha+\rho^2\cos^4\beta} \end{align*}
    • cosα0\cos\alpha\ne0 时,原式 =cos2βcosα=1cos2αcosα=sin2αcosα=\dfrac{\cos^2\beta}{\cos\alpha}=\dfrac{1-\cos^2\alpha}{\cos\alpha}=\dfrac{\sin^2\alpha}{\cos\alpha}
    • cosα=0\cos\alpha=0 时,sin2α=cos2β=1\sin^2\alpha=\cos^2\beta=1,原式 =0=0

二、梯度#

  • 定义3:z=f(x,y)z=f(x,y)DD 内具有一阶连续偏导数,则 P0D\forall P_0\in D 都有 (fx(x0,y0),fy(x0,y0))(f_x(x_0,y_0),f_y(x_0,y_0)),称该向量为 f(x,y)f(x,y)P0P_0 处的梯度(f\bigtriangledown fgradf(x0,y0)=(fx(x0,y0),fy(x0,y0))=fx(x0,y0)i+fy(x0,y0)j\begin{align*} \operatorname{grad} f(x_0,y_0)&=(f_x(x_0,y_0),f_y(x_0,y_0))\\ &=f_x(x_0,y_0)\vec{i}+f_y(x_0,y_0)\vec{j} \end{align*}
    • 推广:u=f(x1,x2,,xn)u=f(x_1,x_2,\cdots,x_n)u=(fx1,fx2,,fxn)P0\bigtriangledown u=(f_{x_1},f_{x_2},\cdots,f_{x_n})|_{P_0} \begin{align*} \dfrac{\partial f}{\partial l}|_{(x_0,y_0)}&=f_x(x_0,y_0)\cos\alpha+f_y(x_0,y_0)\cos\beta\\ &=(f_x,f_y)\cdot (\cos\alpha,\cos\beta)\\ &=\operatorname{grad} f(x_0,y_0) \cdot \vec{e_l}\\ &=|\operatorname{grad}f(x_0,y_0)|\cdot 1 \cdot \cos\theta, \theta\in[0,\pi] \end{align*}
    • 讨论:
      • θ=0\theta=0 时,方向导数最大值为 gradf(x0,y0)\operatorname{grad}f(x_0,y_0)。函数沿 f(x0,y0)\bigtriangledown f(x_0,y_0) 方向变化时,函数增加最快
      • θ=π\theta=\pi 时,方向导数最小值为 gradf(x0,y0)-|\operatorname{grad}f(x_0,y_0)|。函数沿 f(x0,y0)-\bigtriangledown f(x_0,y_0) 变化时,函数减少最快
      • θ=π2\theta=\dfrac{\pi}{2} 时,方向导数为0。函数沿与 gradf(x0,y0)\operatorname{grad}f(x_0,y_0) 垂直方向变化时,函数变化率为0
  • 定义4【等值线】:z=f(x,y)z=f(x,y) 被平面 z=cz=c 所截得的曲线 ll 的方程 {z=f(x,y)z=c\begin{cases}z=f(x,y)\\z=c\end{cases} LLxOyxOy 平面上的投影曲线 LL* {f(x,y)=cz=0\begin{cases}f(x,y)=c\\z=0\end{cases}(柱面)。
    • fxf_xfyf_y 不同时为0,f(x,y)=cf(x,y)=c 上任一点 P0(x0,y0)P_0(x_0,y_0) 处的一个单位法向量为 n=1fx2(x0,y0)+fy2(x0,y0)(fx(x0,y0),fy(x0,y0))gradf(x0,y0)k=fyfx(x0,y0)yy0=fyfx(x0,y0)(xx0)xx0fx(x0,y0)=yy0fy(x0,y0)fn(x0,y0)=gradf(x0,y0)gradf(x0,y0)=fn(x0,y0)n \vec{n}=\dfrac{1}{\sqrt{f_x^2(x_0,y_0)+f_y^2(x_0,y_0)}}\cdot \dfrac{(f_x(x_0,y_0),f_y(x_0,y_0))}{\operatorname{grad}f(x_0,y_0)}\\ k=\dfrac{f_y}{f_x}|_{(x_0,y_0)}\\ y-y_0=\dfrac{f_y}{f_x}|_{(x_0,y_0)}(x-x_0)\\ \dfrac{x-x_0}{f_x(x_0,y_0)}=\dfrac{y-y_0}{f_y(x_0,y_0)}\\ \dfrac{\partial f}{\partial \vec{n}}|_{(x_0,y_0)}=|\operatorname{grad}f(x_0,y_0)|\\ \operatorname{grad}f(x_0,y_0)=\dfrac{\partial f}{\partial \vec{n}}|_{(x_0,y_0)}\cdot \vec{n}

例题#

  1. f(x,y,z)f(x,y,z)(x0,y0,z0)(x_0,y_0,z_0) 处的梯度为 g\vec{g}l=(0,2,2)\vec{l}=(0,2,2)gl=1\vec{g}\cdot \vec{l}=1fl(x0,y0,z0)=gel=1llg=122\dfrac{\partial f}{\partial l}|_{(x_0,y_0,z_0)}=\vec{g}\cdot\vec{e_l}=\dfrac{1}{|\vec{l}|}\vec{l}\cdot\vec{g}=\dfrac{1}{2\sqrt{2}}

  2. u=x2yz+z3u=x^2yz+z^3,求 uuM0(2,1,1)M_0(2,-1,1) 处沿 l=(2,2,1)\vec{l}=(2,-2,1) 的方向导数并求 uuM0M_0 处最大的方向导数及其方向

    解:graduM0=(2xyz,x2z,x2y+3z2)(2,1,1)=(4,4,1)\operatorname{grad}u|_{M_0}=(2xyz,x^2z,x^2y+3z^2)|_{(2,-1,1)}=(-4,4,-1)

    fl=1llgraduM0=13(881)=173\dfrac{\partial f}{\partial l}=\dfrac{1}{|\vec{l}|}\vec{l}\cdot \operatorname{grad}u|_{M_0}=\dfrac{1}{3}(-8-8-1)=-\dfrac{17}{3}

    n=k(4,4,1)\vec{n}=k(-4,4,-1)

    maxunM0=graduM0=33\max \dfrac{\partial u}{\partial \vec{n}}|_{M_0}=|\operatorname{grad}u|_{M_0}|=\sqrt{33}

  3. f(x,y,z)=axy2+byz+cx3z2f(x,y,z)=axy^2+byz+cx^3z^2(1,2,1)(1,2,-1) 处沿z轴正方向的方向导数有最大值64,求a、b、c

    解:k=(0,0,1)\vec{k}=(0,0,1)

    gradf(1,2,1)=(0,0,d)(d>0)\operatorname{grad}f|_{(1,2,-1)}=(0,0,d)\quad(d\gt 0)

    d=64d=64gradf(1,2,1)=(ay2+3cx2z2,2axy+bz,by+2cx3z)(1,2,1)=(4a+3c,4ab,2b2c)\operatorname{grad}f|_{(1,2,-1)}=(ay^2+3cx^2z^2,2axy+bz,by+2cx^3z)|_{(1,2,-1)}=(4a+3c,4a-b,2b-2c)

    {4a+3c=04ab=02b2c=64{a=6b=24c=8\begin{cases}4a+3c=0\\4a-b=0\\2b-2c=64\end{cases}\rightarrow \begin{cases}a=6\\b=24\\c=-8\end{cases}

8.7 方向导数和梯度
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00