850 字
4 分钟
8.5 隐函数的求导公式

§\S8.5 隐函数的求导公式#

一、一个方程的情形#

  1. [定理1]设 F(x,y)=0F(x,y)=0,若在 P0(x0,y0)P_0(x_0,y_0) 某邻域内偏导连续,且 F(x0,y0)=0F(x_0,y_0)=0Fy(x0,y0)0F_y(x_0,y_0)\ne 0,则 F(x,y)=0F(x,y)=0P0P_0 某邻域内可唯一确定 y=f(x)y=f(x)y0=f(x0)y_0=f(x_0) 连续,导数连续。 dydx=F1F2=FxFy\dfrac{\mathrm dy}{\mathrm dx}=-\dfrac{F_1'}{F_2'}=-\dfrac{F_x}{F_y}
  2. [定理2]设 F(x,y,z)=0F(x,y,z)=0P(x0,y0,z0)P(x_0,y_0,z_0) 某一邻域内偏导连续,且 F(x0,y0,z0)=0F(x_0,y_0,z_0)=0Fz(x0,y0,z0)0F_z(x_0,y_0,z_0)\ne 0,则 F(x,y,z)=0F(x,y,z)=0 可确定唯一 z=f(x,y)z=f(x,y)(其连续,一阶偏导连续)且 zx=FxFzzy=FyFz\dfrac{\partial z}{\partial x}=-\dfrac{F_x}{F_z}\\ \dfrac{\partial z}{\partial y}=-\dfrac{F_y}{F_z}
  3. [2的扩展]F(x,y,z,t)=0F(x,y,z,t)=0t=f(x,y,z)t=f(x,y,z),偏导连续且 Ft0F_t\ne 0,有 tx=FxFtty=FyFttz=FzFt\dfrac{\partial t}{\partial x}=-\dfrac{F_x}{F_t}\\ \dfrac{\partial t}{\partial y}=-\dfrac{F_y}{F_t}\\ \dfrac{\partial t}{\partial z}=-\dfrac{F_z}{F_t}

例题#

  1. y=x212sinyy=x^2-\dfrac{1}{2}\sin y,求 dydx\dfrac{\mathrm dy}{\mathrm dx}d2ydx2\dfrac{\mathrm d^2y}{\mathrm dx^2}

    解:

    • 直接法

      dydx=2x12cosydydxdydx=4x2+cosy\begin{align*} \dfrac{\mathrm dy}{\mathrm dx}&=2x-\dfrac{1}{2}\cos y\dfrac{\mathrm dy}{\mathrm dx}\\ \dfrac{\mathrm dy}{\mathrm dx}&=\dfrac{4x}{2+\cos y} \end{align*} d2ydx2=ddx(4x2+cosy)=4(2+cosy)4x(siny)dydx(2+cosy)2=4(2+cosy)2+16x2siny(2+cosy)3\begin{align*} \dfrac{\mathrm d^2y}{\mathrm dx^2}&=\dfrac{\mathrm d}{\mathrm dx}(\dfrac{4x}{2+\cos y})\\ &=\dfrac{4(2+\cos y)-4x(-\sin y)\dfrac{\mathrm dy}{\mathrm dx}}{(2+\cos y)^2}\\ &=\dfrac{4(2+\cos y)^2+16x^2\sin y}{(2+\cos y)^3} \end{align*}
    • 公式法 F(x,y)=yx2+12siny=0F(x,y)=y-x^2+\dfrac{1}{2}\sin y=0

      dydx=FxFy=2x1+12cosy=4x2+cosy\begin{align*} \dfrac{\mathrm dy}{\mathrm dx}&=-\dfrac{F_x}{F_y}\\ &=-\dfrac{-2x}{1+\frac{1}{2}\cos y}\\ &=\dfrac{4x}{2+\cos y} \end{align*} d2ydx2=ddx(4x2+cosy)=4(2+cosy)2+16x2siny(2+cosy)3\begin{align*} \dfrac{\mathrm d^2y}{\mathrm dx^2}&=\dfrac{\mathrm d}{\mathrm dx}(\dfrac{4x}{2+\cos y})\\ &=\dfrac{4(2+\cos y)^2+16x^2\sin y}{(2+\cos y)^3} \end{align*}
  2. z=x3yezz=x^3y-e^z,求 2zxy\dfrac{\partial ^2z}{\partial x \partial y}

    解:F(x,y,z)=x3yezzF(x,y,z)=x^3y-e^z-z

    zx=FxFz=3x2yez1=3x2yez+1\dfrac{\partial z}{\partial x}=-\dfrac{F_x}{F_z}=-\dfrac{3x^2y}{-e^z-1}=\dfrac{3x^2y}{e^z+1}

    y(zx)=y(3x2yez+1)=3x2(ez+1)3x2y(ez+1)zy(ez+1)2=3x2(1+ezx3y)(ez+1)2\begin{align*} \dfrac{\partial }{\partial y}(\dfrac{\partial z}{\partial x})&=\dfrac{\partial }{\partial y}(\dfrac{3x^2y}{e^z+1})\\ &=\dfrac{3x^2(e^z+1)-3x^2y(e^z+1)\cdot \frac{\partial z}{\partial y}}{(e^z+1)^2}\\ &=\dfrac{3x^2(1+e^z-x^3y)}{(e^z+1)^2} \end{align*}
  3. ϕ(xaz,ybz)=0=F(x,y,z)\phi(x-az,y-bz)=0=F(x,y,z)z=f(x,y)z=f(x,y),求证 azx+bzy=1a\dfrac{\partial z}{\partial x}+b\dfrac{\partial z}{\partial y}=1

    证明:

    • 公式法 zx=FxFz=ϕ11+ϕ20ϕ1(a)+ϕ2(b)=ϕ1aϕ1+bϕ2\dfrac{\partial z}{\partial x}=-\dfrac{F_x}{F_z}=-\dfrac{\phi_1'\cdot 1+\phi_2'\cdot 0}{\phi_1'(-a)+\phi_2'(-b)}=\dfrac{\phi_1'}{a\phi_1'+b\phi_2'}

      zy=FyFz=ϕ10+ϕ21ϕ1(a)+ϕ2(b)=ϕ2aϕ1+bϕ2\dfrac{\partial z}{\partial y}=-\dfrac{F_y}{F_z}=-\dfrac{\phi_1'\cdot 0+\phi_2'\cdot 1}{\phi_1'(-a)+\phi_2'(-b)}=\dfrac{\phi_2'}{a\phi_1'+b\phi_2'}

      aϕ1aϕ1+bϕ2+bϕ2aϕ1+bϕ2=1a\cdot \dfrac{\phi_1'}{a\phi_1'+b\phi_2'}+b\cdot \dfrac{\phi_2'}{a\phi_1'+b\phi_2'}=1,得证

    • 微分法 F(x,y,z)=ϕ(xaz,ybz)F(x,y,z)=\phi(x-az,y-bz)dϕ(xaz,ybz=0)\mathrm d \phi(x-az,y-bz=0)

    xaz=ux-az=uybz=vy-bz=v

    ϕudu+ϕvdv=0ϕ1d(xaz)+ϕ2d(ybz)=0ϕ1(dxadz)+ϕ2(dybdz)=0ϕ1dx+ϕ2dy(aϕ1+bϕ2)dz=0dz=ϕ1aϕ1+bϕ2dx+ϕ21aϕ1+bϕ2dy\begin{align*} \dfrac{\partial \phi}{\partial u}\mathrm du+\dfrac{\partial \phi}{\partial v}\mathrm dv&=0\\ \phi_1'\mathrm d(x-az)+\phi_2'\mathrm d(y-bz)&=0\\ \phi_1'(\mathrm dx-a \mathrm dz)+\phi_2'(\mathrm dy-b \mathrm dz)&=0\\ \phi_1'\mathrm dx+\phi_2'\mathrm dy-(a\phi_1'+b\phi_2')\mathrm dz&=0\\ \mathrm dz&=\dfrac{\phi_1'}{a\phi_1'+b\phi_2'}\mathrm dx+\phi_2'\dfrac{1}{a\phi_1'+b\phi_2'}\mathrm dy \end{align*}

    同理可证

二、方程组的情形#

[定理3] {F(x,y,u,v)=0G(x,y,u,v)=0\begin{cases}F(x,y,u,v)=0\\G(x,y,u,v)=0\end{cases},若在 P0P_0 某邻域内偏导连续,F(x0,y0,u0,v0)=0F(x_0,y_0,u_0,v_0)=0G(x0,y0,u0,v0)=0G(x_0,y_0,u_0,v_0)=0J=(F,G)(u,v)=FuFvGuGvJ=\dfrac{\partial (F,G)}{\partial (u,v)}=\begin{vmatrix}F_u & F_v\\ G_u&G_v\end{vmatrix}P0P_0 处不等于0,则可确定一个隐函数组 {u=u(x,y)v=v(x,y)\begin{cases}u=u(x,y)\\v=v(x,y)\end{cases},其唯一、连续、偏导也连续,且

  • ux=1JFxFvGxGv=1J(F,G)(x,v)\dfrac{\partial u}{\partial x}=-\dfrac{1}{J}\begin{vmatrix}F_x&F_v\\G_x&G_v\end{vmatrix}=-\dfrac{1}{J}\dfrac{\partial (F,G)}{\partial (x,v)}
  • uy=1JFyFvGyGv=1J(F,G)(y,v)\dfrac{\partial u}{\partial y}=-\dfrac{1}{J}\begin{vmatrix}F_y&F_v\\G_y&G_v\end{vmatrix}=-\dfrac{1}{J}\dfrac{\partial (F,G)}{\partial (y,v)}
  • vx=1JFuFxGuGx=1J(F,G)(u,x)\dfrac{\partial v}{\partial x}=-\dfrac{1}{J}\begin{vmatrix}F_u&F_x\\G_u&G_x\end{vmatrix}=-\dfrac{1}{J}\dfrac{\partial (F,G)}{\partial (u,x)}
  • vy=1JFuFyGuGy=1J(F,G)(u,y)\dfrac{\partial v}{\partial y}=-\dfrac{1}{J}\begin{vmatrix}F_u&F_y\\G_u&G_y\end{vmatrix}=-\dfrac{1}{J}\dfrac{\partial (F,G)}{\partial (u,y)}

证明:
  1. [直接法]

    {F(x,y,u,v)=0G(x,y,u,v)=0\begin{align*} \begin{cases} F(x,y,u,v)=0\\ G(x,y,u,v)=0 \end{cases} \end{align*}

    u,vu,v 看作 x,yx,y 的函数,两边关于 x,yx,y 求偏导得

    {Fx1+Fy0+Fuux+Fvvx=0Gx1+Gy0+Guux+Gvvx=0\begin{align*} \begin{cases} F_x\cdot 1+F_y\cdot 0+F_u\cdot \dfrac{\partial u}{\partial x}+F_v\cdot \dfrac{\partial v}{\partial x}=0\\ G_x\cdot 1+G_y\cdot 0+G_u\cdot \dfrac{\partial u}{\partial x}+G_v\cdot \dfrac{\partial v}{\partial x}=0 \end{cases} \end{align*} {Fuux+Fvux=FxGuux+Gvux=Gx\begin{align*} \begin{cases} F_u\cdot \dfrac{\partial u}{\partial x}+F_v\cdot \dfrac{\partial u}{\partial x}=-F_x\\ G_u\cdot \dfrac{\partial u}{\partial x}+G_v\cdot \dfrac{\partial u}{\partial x}=-G_x \end{cases} \end{align*}

    根据 Cramer 法则

    ux=D1D=FxFvGxGvFuFvGuGv=1JFxFvGxGvvx=D2D=FuFxGuGxFuFvGuGv=1JFuFxGuGx\begin{align*} \dfrac{\partial u}{\partial x}=\dfrac{D_1}{D}=\dfrac{\begin{vmatrix}-F_x&F_v\\-G_x&G_v\end{vmatrix}}{\begin{vmatrix}F_u&F_v\\G_u&G_v\end{vmatrix}}=-\dfrac{1}{J}\begin{vmatrix}F_x&F_v\\G_x&G_v\end{vmatrix}\\ \dfrac{\partial v}{\partial x}=\dfrac{D_2}{D}=\dfrac{\begin{vmatrix}F_u&-F_x\\G_u&-G_x\end{vmatrix}}{\begin{vmatrix}F_u&F_v\\G_u&G_v\end{vmatrix}}=-\dfrac{1}{J}\begin{vmatrix}F_u&F_x\\G_u&G_x\end{vmatrix} \end{align*}

    同理可得

    {Fuuy+Fvuy=FyGuuy+Gvuy=Gy\begin{align*} \begin{cases} F_u\cdot \dfrac{\partial u}{\partial y}+F_v\cdot \dfrac{\partial u}{\partial y}=-F_y\\ G_u\cdot \dfrac{\partial u}{\partial y}+G_v\cdot \dfrac{\partial u}{\partial y}=-G_y \end{cases} \end{align*} uy=D1D=FyFvGyGvFuFvGuGv=1JFyFvGyGvvy=D2D=FuFyGuGyFuFvGuGv=1JFuFyGuGy\begin{align*} \dfrac{\partial u}{\partial y}=\dfrac{D_1}{D}=\dfrac{\begin{vmatrix}-F_y&F_v\\-G_y&G_v\end{vmatrix}}{\begin{vmatrix}F_u&F_v\\G_u&G_v\end{vmatrix}}=-\dfrac{1}{J}\begin{vmatrix}F_y&F_v\\G_y&G_v\end{vmatrix}\\ \dfrac{\partial v}{\partial y}=\dfrac{D_2}{D}=\dfrac{\begin{vmatrix}F_u&-F_y\\G_u&-G_y\end{vmatrix}}{\begin{vmatrix}F_u&F_v\\G_u&G_v\end{vmatrix}}=-\dfrac{1}{J}\begin{vmatrix}F_u&F_y\\G_u&G_y\end{vmatrix} \end{align*}
  2. [微分法]

    {F(x,y,u,v)=0G(x,y,u,v)=0\begin{align*} \begin{cases} F(x,y,u,v)=0\\ G(x,y,u,v)=0 \end{cases} \end{align*}

    两边微分得

    {Fxdx+Fydy+Fudu+Fvdv=0Gxdx+Gydy+Gudu+Gvdv=0\begin{align*} \begin{cases} F_x \mathrm dx+F_y \mathrm dy+F_u \mathrm du+F_v \mathrm dv=0\\ G_x \mathrm dx+G_y \mathrm dy+G_u \mathrm du+G_v \mathrm dv=0\\ \end{cases} \end{align*} {Fudu+Fvdv=FxdxFydyGudu+Gvdv=GxdxGydy\begin{align*} \begin{cases} F_u \mathrm du+F_v \mathrm dv=-F_x \mathrm dx-F_y \mathrm dy\\ G_u \mathrm du+G_v \mathrm dv=-G_x \mathrm dx-G_y \mathrm dy \end{cases} \end{align*}

    根据 Cramer 法则

    du=FxdxFydyFvGxdxGydyGvFuFvGuGv=1JFxdx+FydyFvGxdx+GydyGv=1J(FxFvGxGvdx+FyFvGyGvdy)\begin{align*} \mathrm du=\dfrac{\begin{vmatrix}-F_x \mathrm dx-F_y \mathrm dy&F_v\\-G_x \mathrm dx-G_y \mathrm dy & G_v\end{vmatrix}}{\begin{vmatrix}F_u&F_v\\G_u&G_v\end{vmatrix}}&=-\dfrac{1}{J}\left | \begin{matrix} F_x \mathrm dx+F_y \mathrm dy & F_v \\ G_x \mathrm dx+G_y \mathrm dy & G_v \\ \end{matrix} \right |\\ &=-\dfrac{1}{J}(\begin{vmatrix}F_x&F_v\\G_x&G_v\end{vmatrix}\mathrm dx+\begin{vmatrix}F_y&F_v\\G_y&G_v\end{vmatrix}\mathrm dy) \end{align*} dv=FuFxdxFydyGuGxdxGydyFuFvGuGv=1JFuFxdx+FydyGuGxdx+Gydy=1J(FuFxGuGxdx+FuFyGuGydy)\begin{align*} \mathrm dv=\dfrac{\begin{vmatrix}F_u&-F_x \mathrm dx-F_y \mathrm dy\\G_u &-G_x \mathrm dx-G_y \mathrm dy\end{vmatrix}}{\begin{vmatrix}F_u&F_v\\G_u&G_v\end{vmatrix}}&=-\dfrac{1}{J}\left | \begin{matrix} F_u & F_x \mathrm dx+F_y \mathrm dy \\ G_u & G_x \mathrm dx+G_y \mathrm dy \\ \end{matrix} \right |\\ &=-\dfrac{1}{J}(\begin{vmatrix}F_u&F_x\\G_u&G_x\end{vmatrix}\mathrm dx+\begin{vmatrix}F_u&F_y\\G_u&G_y\end{vmatrix}\mathrm dy) \end{align*}

    根据一阶微分的形式不变性,可得到与法一相同的结果

扩展情形#

  • 5元方程组~2个中间变量,3个自变量

    {F(x,y,z,u,v)=0G(x,y,z,u,v)=0{u=u(x,y,z)v=v(x,y,z)\begin{align*} \begin{cases} F(x,y,z,u,v)=0\\ G(x,y,z,u,v)=0 \end{cases} \rightarrow \begin{cases} u=u(x,y,z)\\ v=v(x,y,z) \end{cases} \end{align*}

    其中 J=FuFvGuGvJ=\begin{vmatrix}F_u&F_v\\G_u&G_v\end{vmatrix}(隐函数中因变量求偏导)

    • uz=1JFzFvGzGv\dfrac{\partial u}{\partial z}=-\dfrac{1}{J}\begin{vmatrix}F_z&F_v\\G_z&G_v\end{vmatrix}

    • vz=1JFuFzGuGz\dfrac{\partial v}{\partial z}=-\dfrac{1}{J}\begin{vmatrix}F_u&F_z\\G_u&G_z\end{vmatrix}

    • ……

  • 4元方程组~3个中间变量,1个自变量

    {F(x,u,v,w)=0G(x,u,v,w)=0H(x,u,v,w)=0{u=u(x)v=v(x)w=w(x)\begin{align*} \begin{cases} F(x,u,v,w)=0\\ G(x,u,v,w)=0\\ H(x,u,v,w)=0 \end{cases} \rightarrow \begin{cases} u=u(x)\\ v=v(x)\\ w=w(x) \end{cases} \end{align*}

    其中 J=FuFvFwGuGvGwHuHvHwJ=\begin{vmatrix}F_u&F_v&F_w\\G_u&G_v&G_w\\H_u&H_v&H_w\end{vmatrix}

    • dudx=1JFxFvFwGxGvGwHxHvHw\dfrac{\mathrm du}{\mathrm dx}=-\dfrac{1}{J}\begin{vmatrix}F_x&F_v&F_w\\G_x&G_v&G_w\\H_x&H_v&H_w\end{vmatrix}

    • dvdx=1JFuFxFwGuGxGwHuHxHw\dfrac{\mathrm dv}{\mathrm dx}=-\dfrac{1}{J}\begin{vmatrix}F_u&F_x&F_w\\G_u&G_x&G_w\\H_u&H_x&H_w\end{vmatrix}

    • dwdx=1JFuFvFxGuGvGxHuHvHx\dfrac{\mathrm dw}{\mathrm dx}=-\dfrac{1}{J}\begin{vmatrix}F_u&F_v&F_x\\G_u&G_v&G_x\\H_u&H_v&H_x\end{vmatrix}

例题#

  1. {xu22yv2=0y2u+3x2v=3\begin{cases}xu^2-2yv^2=0\\y^2u+3x^2v=3\end{cases},求 ux\dfrac{\partial u}{\partial x}uy\dfrac{\partial u}{\partial y}vx\dfrac{\partial v}{\partial x}vy\dfrac{\partial v}{\partial y}

    解:

    • F(x,y,u,v)=xu22yv2F(x,y,u,v)=xu^2-2yv^2Fx=u2F_x=u^2Fy=2v2F_y=-2v^2Fu=2xuF_u=2xuFv=4vyF_v=-4vy
    • G(x,y,u,v)=y2u+3x2v3G(x,y,u,v)=y^2u+3x^2v-3Gx=6xG_x=6xGy=2yuG_y=2yuGu=2yG_u=2yGv=3x2G_v=3x^2
    • ux=3x2u2+24xyv22(3x3u+2y3v)\dfrac{\partial u}{\partial x}=-\dfrac{3x^2u^2+24xyv^2}{2(3x^3u+2y^3v)}
    • uy=3x3v24y2uv3x3u+2y3v\dfrac{\partial u}{\partial y}=\dfrac{3x^3v^2-4y^2uv}{3x^3u+2y^3v}
    • vx=12x2uvy2u22(3x3u+2y3v)\dfrac{\partial v}{\partial x}=-\dfrac{12x^2uv-y^2u^2}{2(3x^3u+2y^3v)}
    • vy=2xyu2+y2v23x3u+2y3v\dfrac{\partial v}{\partial y}=-\dfrac{2xyu^2+y^2v^2}{3x^3u+2y^3v}
  2. y=f(x,t)y=f(x,t),t是 F(x,y,t)=0F(x,y,t)=0 确定的关于x、y的函数,求 dydx\dfrac{\mathrm dy}{\mathrm dx}dtdx\dfrac{\mathrm dt}{\mathrm dx}

    解:令 {G(x,y,t)=yf(x,t)F(x,y,t)=0\begin{cases}G(x,y,t)=y-f(x,t)\\F(x,y,t)=0\end{cases},其中,Gx=f1G_x=-f_1'Gy=1G_y=1Gt=f2G_t=-f_2'Fx=F1F_x=F_1'Fy=F2F_y=F_2'Ft=F3F_t=F_3'

    代入公式得

    dydx=1JGxGtFxFt=1F3F2f2(F1f2F3f1)\dfrac{\mathrm dy}{\mathrm dx}=-\dfrac{1}{J}\begin{vmatrix}G_x&G_t\\F_x&F_t\end{vmatrix}=-\dfrac{1}{F_3'-F_2'f_2'}\cdot (F_1'f_2'-F_3'f_1')

    dtdx=1JGyGxFyFx=1F3F2f2(F1+f1F2)\dfrac{\mathrm dt}{\mathrm dx}=-\dfrac{1}{J}\begin{vmatrix}G_y&G_x\\F_y&F_x\end{vmatrix}=-\dfrac{1}{F_3'-F_2'f_2'}\cdot (F_1'+f_1'F_2')

    其中 J=GyGtFyFtJ=\begin{vmatrix}G_y&G_t\\F_y&F_t\end{vmatrix}

  3. u=f(x,y,xyz)u=f(x,y,xyz)z=z(x,y)z=z(x,y)xyzg(xy+zt)dt=exyz\int_{xy}^zg(xy+z-t)\mathrm dt=e^{xyz} 确定,ff 可微,gg 连续,求 xuxyuyx\cdot \dfrac{\partial u}{\partial x}-y\cdot \dfrac{\partial u}{\partial y}

    解:

    ux=f11+f20+f3(yz+xyzx)\dfrac{\partial u}{\partial x}=f_1'\cdot 1+f_2'\cdot 0+f_3'(yz+xy\cdot \dfrac{\partial z}{\partial x})

    uy=f10+f21+f3(xz+xyzy)\dfrac{\partial u}{\partial y}=f_1'\cdot 0+f_2'\cdot 1+f_3'(xz+xy\cdot \dfrac{\partial z}{\partial y})

    s=xy+zts=xy+z-t

    zxyg(s)(ds)=xyzg(s)ds\begin{align*} \int_z^{xy}g(s)(-\mathrm ds)=\int_{xy}^zg(s)\mathrm ds \end{align*} x[xyzg(s)ds]=g(z)zxg(xy)y左边=exyz(yz+xyzx)右边\begin{align*} \dfrac{\partial }{\partial x}[\int_{xy}^zg(s)\mathrm ds]=\underset{左边}{g(z)\cdot \dfrac{\partial z}{\partial x}-g(xy)\cdot y} =\underset{右边}{e^{xyz}(yz+xy\dfrac{\partial z}{\partial x})} \end{align*}

    zx=yzexyz+g(xy)yg(z)xyexyz\dfrac{\partial z}{\partial x}=\dfrac{yze^{xyz}+g(xy)\cdot y}{g(z)-xye^{xyz}},对y求偏导得 g(z)zyg(xy)x=exyz(xz+xyzy)g(z)\cdot \dfrac{\partial z}{\partial y}-g(xy)\cdot x=e^{xyz}(xz+xy\dfrac{\partial z}{\partial y})

    zy=xzexyz+g(xy)yg(z)xzexyz\dfrac{\partial z}{\partial y}=\dfrac{xze^{xyz}+g(xy)\cdot y}{g(z)-xze^{xyz}},原式 =xf1yf2=xf_1'-yf_2'

8.5 隐函数的求导公式
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00