1005 字
5 分钟
8.4 复合函数求导

§\S8.4 复合函数求导#

一、多元函数的链式求导法则#

1. 中间变量为一元函数#

定理: 若 u=ϕ(t)u=\phi(t)v=ψ(t)v=\psi(t)tt 处可导,且 z=f(u,v)z=f(u,v)(u,v)(u,v) 处偏导连续,则 z=f[ϕ(t),ψ(t)]z=f[\phi(t),\psi(t)]tt 可导,且

dzdt=fududt+fvdvdt\begin{align*} \dfrac{\mathrm dz}{\mathrm dt}=\dfrac{\partial f}{\partial u}\cdot \dfrac{\mathrm du}{\mathrm dt}+\dfrac{\partial f}{\partial v}\cdot \dfrac{\mathrm dv}{\mathrm dt} \end{align*}

z=f(u,v,w)z=f(u,v,w)u=u(t)u=u(t)v=v(t)v=v(t)w=w(t)w=w(t)tt 处可导,偏导连续,有

dzdt=fududt+fvdvdt+fwdwdt\begin{align*} \dfrac{\mathrm dz}{\mathrm dt}=\dfrac{\partial f}{\partial u}\cdot \dfrac{\mathrm du}{\mathrm dt}+\dfrac{\partial f}{\partial v}\cdot \dfrac{\mathrm dv}{\mathrm dt}+\dfrac{\partial f}{\partial w}\cdot \dfrac{\mathrm dw}{\mathrm dt} \end{align*}

2. 中间变量为多元函数#

z=f(u,v)z=f(u,v)(u,v)(u,v) 处偏导连续,且 u=ϕ(x,y)u=\phi(x,y)v=ψ(x,y)v=\psi(x,y)(x,y)(x,y) 偏导存在,则 z=f[ϕ(x,y),ψ(x,y)]z=f[\phi(x,y),\psi(x,y)](x,y)(x,y) 偏导存在,且

zx=fuux+fvvxzy=fuuy+fvvy\begin{align*} \dfrac{\partial z}{\partial x}=\dfrac{\partial f}{\partial u}\cdot \dfrac{\partial u}{\partial x}+\dfrac{\partial f}{\partial v}\cdot \dfrac{\partial v}{\partial x}\\ \dfrac{\partial z}{\partial y}=\dfrac{\partial f}{\partial u}\cdot \dfrac{\partial u}{\partial y}+\dfrac{\partial f}{\partial v}\cdot \dfrac{\partial v}{\partial y} \end{align*}

w=f(u)w=f(u)u=u(x,y,z)u=u(x,y,z),有

wx=dfduuxwy=dfduuywz=dfduuz\begin{align*} \dfrac{\partial w}{\partial x}=\dfrac{\mathrm df}{\mathrm du}\cdot \dfrac{\partial u}{\partial x}\\ \dfrac{\partial w}{\partial y}=\dfrac{\mathrm df}{\mathrm du}\cdot \dfrac{\partial u}{\partial y}\\ \dfrac{\partial w}{\partial z}=\dfrac{\mathrm df}{\mathrm du}\cdot \dfrac{\partial u}{\partial z} \end{align*}

3. 中间变量既有一元函数,又有二元函数#

z=f[ϕ(x,y),ψ(y)]z=f[\phi(x,y),\psi(y)](x,y)(x,y) 偏导存在,有

zx=fuuxzy=fuuy+fvdvdy\begin{align*} \dfrac{\partial z}{\partial x}&=\dfrac{\partial f}{\partial u}\cdot \dfrac{\partial u}{\partial x}\\ \dfrac{\partial z}{\partial y}&=\dfrac{\partial f}{\partial u}\cdot \dfrac{\partial u}{\partial y}+\dfrac{\partial f}{\partial v}\cdot \dfrac{\mathrm dv}{\mathrm dy} \end{align*}

4. 中间变量也是自变量#

u=ϕ(x,y)u=\phi(x,y)(x,y)(x,y) 偏导存在,且 z=f(u,x,y)z=f(u,x,y)(u,x,y)(u,x,y) 偏导连续,则 z=f[ϕ(x,y),x,y]z=f[\phi(x,y),x,y](x,y)(x,y) 偏导存在

zx=fuyx+fxdxdxzy=fuuy+fy1\begin{align*} \dfrac{\partial z}{\partial x}&=\dfrac{\partial f}{\partial u}\cdot \dfrac{\partial y}{\partial x}+\dfrac{\partial f}{\partial x}\cdot \dfrac{\mathrm dx}{\mathrm dx}\\ \dfrac{\partial z}{\partial y}&=\dfrac{\partial f}{\partial u}\cdot \dfrac{\partial u}{\partial y}+\dfrac{\partial f}{\partial y}\cdot 1 \end{align*}

例题#

  1. z=x2eyz=x^2e^yx=2costx=2\cos ty=t+sinty=t+\sin t,求 dzdt\dfrac{\mathrm dz}{\mathrm dt}

    解:

    • 法一:

      z=(2cost)2et+sint=4cos2tet+sintz=(2\cos t)^2e^{t+\sin t}=4\cos^2te^{t+\sin t}

      dzdt=4[(2sintcost)et+sint+cos2t(1+cost)et+sint]=4sin2tet+sint+4cos2t(1+cost)et+sint\begin{align*} \dfrac{\mathrm dz}{\mathrm dt}&=4\cdot[(-2\sin t\cos t)e^{t+\sin t}+\cos ^2t(1+\cos t)e^{t+\sin t}]\\ &=-4\sin 2te^{t+\sin t}+4\cos^2t(1+\cos t)e^{t+\sin t} \end{align*}
    • 法二:

      dzdt=fxdxdt+fydydt=2xey(2sint)+x2ey(1+cost)=22costet+sint(2sint)+4cos2tet+sint(1+cost)=4sin2tet+sint+(4cos2t+4cos3t)et+sint\begin{align*} \dfrac{\mathrm dz}{\mathrm dt}&=\dfrac{\partial f}{\partial x}\cdot \dfrac{\mathrm dx}{\mathrm dt}+\dfrac{\partial f}{\partial y}\cdot \dfrac{\mathrm dy}{\mathrm dt}\\ &=2xe^y\cdot(-2\sin t)+x^2e^y(1+\cos t)\\ &=2\cdot 2\cos te^{t+\sin t}(-2\sin t)+4\cos^2te^{t+\sin t}(1+\cos t)\\ &=-4\sin 2te^{t+\sin t}+(4\cos^2t+4\cos^3t)e^{t+\sin t} \end{align*}
  2. y=xxy=x^xx>0x\gt 0),求 dydx\dfrac{\mathrm dy}{\mathrm dx}

    解:

    • 法一:

      y=exlnxy=e^{x\ln x}dydx=exlnx(1+lnx)=xx(lnx+1)\dfrac{\mathrm dy}{\mathrm dx}=e^{x\ln x}(1+\ln x)=x^x(\ln x+1)

    • 法二:

      y=uvy=u^vu=xu=xv=xv=x

      dydx=yududx+yvdvdx=vuv11+uvlnu1=xx(lnx+1)\begin{align*} \dfrac{\mathrm dy}{\mathrm dx}&=\dfrac{\partial y}{\partial u}\cdot \dfrac{\mathrm du}{\mathrm dx}+\dfrac{\partial y}{\partial v}\cdot \dfrac{\mathrm dv}{\mathrm dx}\\ &=vu^{v-1}\cdot 1+u^v\ln u\cdot 1\\ &=x^x(\ln x+1) \end{align*}
  3. z=f(u,v)={u2vu2+v2(u,v)(0,0)0(u,v)=(0,0)z=f(u,v)=\begin{cases}\dfrac{u^2v}{u^2+v^2}&(u,v)\ne(0,0)\\0&(u,v)=(0,0)\end{cases}u=tu=tv=tv=t,求 dzdxt=0\dfrac{\mathrm dz}{\mathrm dx}|_{t=0}

    解:【本题不可使用链式法则,因为 f(u,v)f(u,v)(0,0)(0,0) 偏导不连续】

    z={t3t2+t2=t2t00t=0\begin{align*} z=\begin{cases} \dfrac{t^3}{t^2+t^2}=\dfrac{t}{2} & t\ne 0\\ 0 & t=0 \end{cases} \end{align*}

    z=t2,tR\therefore z=\dfrac{t}{2},t\in R

    dzdxt=0=12\dfrac{\mathrm dz}{\mathrm dx}|_{t=0}=\dfrac{1}{2}

  4. z=eucosvz=e^u\cos vu=2xyu=2x-yv=xyv=xy,求 zx\dfrac{\partial z}{\partial x}zy\dfrac{\partial z}{\partial y}

解:

  • 法1:z=e2xycos(xy)z=e^{2x-y}\cos(xy)zx=2e2xycos(xy)+e2xy[sin(xy)]y\dfrac{\partial z}{\partial x}=2e^{2x-y}\cos(xy)+e^{2x-y}[-\sin(xy)]\cdot yzy=e2xycos(xy)+e2xy[sin(xy)]x\dfrac{\partial z}{\partial y}=-e^{2x-y}\cos(xy)+e^{2x-y}[-\sin(xy)]\cdot x

  • 法2:

    zx=fuux+fxvx=eucosv2+(sinv)euy=2e2xycos(xy)+[sin(xy)]e2xyy\begin{align*} \dfrac{\partial z}{\partial x}&=\dfrac{\partial f}{\partial u}\cdot \dfrac{\partial u}{\partial x}+\dfrac{\partial f}{\partial x}\cdot \dfrac{\partial v}{\partial x}\\ &=e^u\cos v\cdot 2+(-\sin v)e^uy\\ &=2e^{2x-y}\cos(xy)+[-\sin(xy)]e^{2x-y}y \end{align*} zy=fuuy+fvvy=eucosv(1)+eu(sinv)x=e2xycos(xy)e2xysin(xy)x\begin{align*} \dfrac{\partial z}{\partial y}&=\dfrac{\partial f}{\partial u}\cdot \dfrac{\partial u}{\partial y}+\dfrac{\partial f}{\partial v}\cdot \dfrac{\partial v}{\partial y}\\ &=e^u\cos v\cdot(-1)+e^u(-\sin v)x\\ &=-e^{2x-y}\cos(xy)-e^{2x-y}\sin(xy)\cdot x \end{align*}
  1. z=f(x,u)=x2+uz=f(x,u)=x^2+uu=cos(xy)u=\cos (xy),求 zx\dfrac{\partial z}{\partial x}fx\dfrac{\partial f}{\partial x}

    解:zx=fuux+fx1=1(sinxy)y+2x\dfrac{\partial z}{\partial x}=\dfrac{\partial f}{\partial u}\cdot \dfrac{\partial u}{\partial x}+\dfrac{\partial f}{\partial x}\cdot 1=1\cdot(-\sin xy)\cdot y+2xfx=2x\dfrac{\partial f}{\partial x}=2x

  2. z=f(u,v)z=f(u,v)(u,v)(u,v) 偏导连续,求 zx\dfrac{\partial z}{\partial x}zy\dfrac{\partial z}{\partial y},其中 u=3x+2yu=3x+2yv=x2+y2v=x^2+y^2

    解:zx=fu3+fv2x=3f1+2xf2\dfrac{\partial z}{\partial x}=\dfrac{\partial f}{\partial u}\cdot 3+\dfrac{\partial f}{\partial v}\cdot 2x=3f_1'+2xf_2'zy=fu2+fv2y=2f1+2yf2\dfrac{\partial z}{\partial y}=\dfrac{\partial f}{\partial u}\cdot 2+\dfrac{\partial f}{\partial v}\cdot 2y=2f_1'+2yf_2'

    6-1 z=f(u,v)z=f(u,v)(u,v)(u,v) 二阶偏导也连续,求 2zx2\dfrac{\partial ^2z}{\partial x^2}2zy2\dfrac{\partial ^2z}{\partial y^2}2zxy\dfrac{\partial ^2z}{\partial x \partial y},其他同上

    解:

    2zx2=x(zx)=x(3f1+2xf2)=3xf1+2(f2+xf21)=3f11+2xf21\begin{align*} \dfrac{\partial ^2z}{\partial x^2}&=\dfrac{\partial }{\partial x}(\dfrac{\partial z}{\partial x})\\ &=\dfrac{\partial }{\partial x}(3f_1'+2xf_2')\\ &=3\dfrac{\partial }{\partial x}f_1'+2(f_2'+xf_{21}'')\\ &=3f_{11}''+2xf_{21}'' \end{align*} 2zy2=y(zy)=y(2f1+2yf2)=2f12+2(f2+yf22)=2f12+2yf22\begin{align*} \dfrac{\partial ^2z}{\partial y^2}&=\dfrac{\partial }{\partial y}(\dfrac{\partial z}{\partial y})\\ &=\dfrac{\partial }{\partial y}(2f_1'+2yf_2')\\ &=2f_{12}''+2(f_2'+yf_{22}'')\\ &=2f_{12}''+2yf_{22}'' \end{align*} 2zxy=y(zx)=y(3f1+2xf2)=3f12+2xf22\begin{align*} \dfrac{\partial ^2z}{\partial x \partial y}&=\dfrac{\partial }{\partial y}(\dfrac{\partial z}{\partial x})\\ &=\dfrac{\partial }{\partial y}(3f_1'+2xf_2')\\ &=3f_{12}''+2xf_{22}'' \end{align*}
  3. z=f(exsiny)z=f(e^x\sin y),求 2zx2\dfrac{\partial ^2z}{\partial x^2}2zxy\dfrac{\partial ^2z}{\partial x \partial y}

    解: zx=dfduux=fexsiny\dfrac{\partial z}{\partial x}=\dfrac{\mathrm df}{\mathrm du}\cdot \dfrac{\partial u}{\partial x}=f'e^x\sin y

    zy=dfduuy=fexcosy\dfrac{\partial z}{\partial y}=\dfrac{\mathrm df}{\mathrm du}\cdot \dfrac{\partial u}{\partial y}=f'e^x\cos y

    2zx2=x(fexsiny)=siny[(xf)ex+fex]=siny(fexsinye2+fex)=siny(fe2xsiny+fex)\begin{align*} \dfrac{\partial ^2z}{\partial x^2}&=\dfrac{\partial }{\partial x}(f'e^x\sin y)\\ &=\sin y[(\dfrac{\partial }{\partial x}f)'e^x+f'e^x]\\ &=\sin y(f''e^x\sin y\cdot e^2+f'e^x)\\ &=\sin y(f''e^{2x}\sin y+f'e^x) \end{align*} 2zxy=y(fexsiny)=ex[(yf)siny+fcosy]=ex(fcosysiny+fcosy)\begin{align*} \dfrac{\partial ^2z}{\partial x \partial y}&=\dfrac{\partial }{\partial y}(f'e^x\sin y)\\ &=e^x[(\dfrac{\partial }{\partial y}f)'\sin y+f'\cos y]\\ &=e^x(f''\cos y\sin y+f'\cos y) \end{align*}
  4. u=f(x,y)u=f(x,y) 二阶偏导连续,证明经过 x=ρcosθx=\rho \cos\thetay=ρsinθy=\rho \sin \theta 变换后的方程满足如下关系:

    • (ux)2+(uy)2=(uρ)2+1ρ2(uθ)2(\dfrac{\partial u}{\partial x})^2+(\dfrac{\partial u}{\partial y})^2=(\dfrac{\partial u}{\partial \rho})^2+\dfrac{1}{\rho^2}(\dfrac{\partial u}{\partial \theta})^2
    • 2ux2+2yy2=2uρ2+1ρuρ+1ρ2(2uθ2)\dfrac{\partial ^2u}{\partial x^2}+\dfrac{\partial ^2y}{\partial y^2}=\dfrac{\partial ^2u}{\partial \rho^2}+\dfrac{1}{\rho}\cdot \dfrac{\partial u}{\partial \rho}+\dfrac{1}{\rho^2}(\dfrac{\partial ^2u}{\partial \theta^2})

    解: uρ=ρf(ρcosθ,ρsinθ)=f1cosθ+f2sinθ\dfrac{\partial u}{\partial \rho}=\dfrac{\partial }{\partial \rho}f(\rho \cos\theta, \rho \sin\theta)=f_1'\cos\theta+f_2'\sin\theta

    uθ=θf(ρcosθ,ρsinθ)=ρf1sinθ+ρf2cosθ\dfrac{\partial u}{\partial \theta}=\dfrac{\partial }{\partial \theta}f(\rho \cos\theta, \rho \sin\theta)=-\rho f_1'\sin \theta+\rho f_2'\cos \theta

    右边 =(f1cosθ+f2sinθ)2+1ρ2(ρf1sinθ+ρf2cosθ)=f12+f22==(f_1'\cos\theta+f_2'\sin\theta)^2+\dfrac{1}{\rho^2}(-\rho f_1'\sin\theta+\rho f_2'\cos\theta)=f_1'^2+f_2'^2= 左边,1式得证

    2uρ2=ρ(uρ)=cosθρf1+sinθρf2=cosθ(f11cosθ+f12sinθ)+sinθ(f21cosθ+f22sinθ)=cos2θf11+sin2θf12+sin2θf12\begin{align*} \dfrac{\partial ^2u}{\partial \rho^2}&=\dfrac{\partial }{\partial \rho}(\dfrac{\partial u}{\partial \rho})\\ &=\cos\theta \dfrac{\partial }{\partial \rho}f_1'+\sin\theta\dfrac{\partial }{\partial \rho}f_2'\\ &=\cos\theta(f_{11}''\cos\theta+f_{12}''\sin\theta)+\sin\theta(f_{21}''\cos\theta+f_{22}''\sin\theta)\\ &=\cos^2\theta f_{11}''+\sin^2\theta f_{12}''+\sin 2\theta f_{12}'' \end{align*} 2uθ2=θ(uθ)=θ(ρf1sinθ+ρf2cosθ)=ρ[θ(f1sinθ)θ(f2cosθ)]=ρ{θf1sinθ+f1cosθ[θf2cosθ+f2(sinθ)]}=ρ[sinθ(ρf11sinθ+ρf12cosθ)cosθ(ρf21sinθ+ρf22cosθ)]ρuρ=ρ2sin2θf11+ρ2cos2θf22ρ2sin2θf12ρuρ\begin{align*} \dfrac{\partial ^2u}{\partial \theta^2}&=\dfrac{\partial }{\partial \theta}(\dfrac{\partial u}{\partial \theta})\\ &=\dfrac{\partial }{\partial \theta}(-\rho f_1'\sin\theta+\rho f_2'\cos\theta)\\ &=-\rho [\dfrac{\partial }{\partial \theta}(f_1'\sin\theta)-\dfrac{\partial }{\partial \theta}(f_2'\cos \theta)]\\ &=-\rho\{\dfrac{\partial }{\partial \theta}f_1'\sin\theta+f_1'\cos\theta-[\dfrac{\partial }{\partial \theta}f_2'\cos\theta+f_2'(-\sin\theta)]\}\\ &=-\rho[\sin\theta(-\rho f_{11}''\sin\theta+\rho f_{12}''\cos\theta)-\cos\theta(-\rho f_{21}''\sin\theta+\rho f_{22}''\cos\theta)]-\rho\cdot \dfrac{\partial u}{\partial \rho}\\ &=\rho^2 \sin^2\theta f_{11}''+\rho^2 \cos^2\theta f_{22}''-\rho^2 \sin 2\theta f_{12}''-\rho\cdot \dfrac{\partial u}{\partial \rho} \end{align*}

    右边 =cos2θf11+sin2θf22+sin2θf12+1ρ(f1cosθ+f2sinθ)+1ρ2(ρ2sin2θf11+ρ2cos2θf22ρ2sin2θf12ρuρ)=f11+f12==\cos^2\theta f_{11}''+\sin^2\theta f_{22}''+\sin 2\theta f_{12}''+\dfrac{1}{\rho}(f_1'\cos\theta+f_2'\sin\theta)+\dfrac{1}{\rho^2}(\rho^2\sin^2\theta f_{11}''+\rho^2\cos^2\theta f_{22}''-\rho^2\sin 2\theta f_{12}''-\rho\cdot \dfrac{\partial u}{\partial \rho})=f_{11}''+f_{12}''= 左边,2式得证

二、一阶全微分的形式不变性#

z=f(x,y)z=f(x,y)x,yx,y 为自变量),dz=fxdx+fydy\mathrm dz=\dfrac{\partial f}{\partial x}\mathrm dx+\dfrac{\partial f}{\partial y}\mathrm dy

x=ϕ(x,t)x=\phi(x,t)y=ψ(s,t)y=\psi(s,t)x,yx,y 为中间变量),

dz=zsds+ztdt=(fxϕs+fyψs)ds(或(fxϕt+fyψs)dt=fx(ϕsds+ψtdt)dx+fy(ϕsds+ψtdt)dy\begin{align*} \mathrm dz&=\dfrac{\partial z}{\partial s}\mathrm ds+\dfrac{\partial z}{\partial t}\mathrm dt\\ &=(\dfrac{\partial f}{\partial x}\cdot \dfrac{\partial \phi}{\partial s}+\dfrac{\partial f}{\partial y}\cdot \dfrac{\partial \psi}{\partial s})\mathrm ds(或 (\dfrac{\partial f}{\partial x}\cdot \dfrac{\partial \phi}{\partial t}+\dfrac{\partial f}{\partial y}\cdot \dfrac{\partial \psi}{\partial s})\mathrm dt)\\ &=\dfrac{\partial f}{\partial x}\underset{\mathrm dx}{(\dfrac{\partial \phi}{\partial s}\mathrm ds+\dfrac{\partial \psi}{\partial t}\mathrm dt)}+\dfrac{\partial f}{\partial y}\underset{\mathrm dy}{(\dfrac{\partial \phi}{\partial s}\mathrm ds+\dfrac{\partial \psi}{\partial t}\mathrm dt)} \end{align*}

例题#

  1. z=esin(xy)z=e^{\sin(xy)},求 zx\dfrac{\partial z}{\partial x}zy\dfrac{\partial z}{\partial y}

    解:

    dz=d[esin(xy)]=esin(xy)dsin(xy)=esin(xy)cos(xy)d(xy)=esin(xy)cos(xy)(ydx+xdy)\begin{align*} \mathrm dz&=\mathrm d[e^{\sin(xy)}]\\ &=e^{\sin (xy)}\mathrm d\sin(xy)\\ &=e^{\sin (xy)}\cos (xy)\mathrm d(xy)\\ &=e^{\sin (xy)}\cos (xy)(y \mathrm dx+ x \mathrm dy) \end{align*}

    zx=yesin(xy)cos(xy)\dfrac{\partial z}{\partial x}=y\cdot e^{\sin (xy)}\cos (xy)

    zy=xesin(xy)cos(xy)\dfrac{\partial z}{\partial y}=x\cdot e^{\sin (xy)}\cos (xy)

  2. u=f(x,y,z)u=f(x,y,z)y=ϕ(x,t)y=\phi(x,t)t=ψ(x,z)t=\psi(x,z),求 ux\dfrac{\partial u}{\partial x}uz\dfrac{\partial u}{\partial z}

    解:

    du=df(x,y,z)=f1dx+f2dy+f3dz=f1dx+f2dϕ(x,t)+f3dz=f1dx+f2d(ϕ1dx+ϕ2dt)+f3dz=f1dx+f2[ϕ1dx+ϕ2(ψ1dx+ψ2dz)]+f3dz=(f1+f2ϕ1+f2ϕ2ψ1)dx+(f3+f2ϕ2ψ2)dz\begin{align*} \mathrm du&=\mathrm df(x,y,z)\\ &=f_1'\mathrm dx+f_2'\mathrm dy+f_3'\mathrm dz\\ &=f_1'\mathrm dx+f_2'\mathrm d\phi(x,t)+f_3'\mathrm dz\\ &=f_1'\mathrm dx+f_2'\mathrm d(\phi_1'\mathrm dx+\phi_2'\mathrm dt)+f_3'\mathrm dz\\ &=f_1'\mathrm dx+f_2'[\phi_1'\mathrm dx+\phi_2'(\psi_1' \mathrm dx+\psi_2' \mathrm dz)]+f_3'\mathrm dz\\ &=(f_1'+f_2'\phi_1'+f_2'\phi_2'\psi_1')\mathrm dx+(f_3'+f_2'\phi_2'\psi_2')\mathrm dz \end{align*}

    ux=f1+f2ϕ1+f2ϕ2ψ1\dfrac{\partial u}{\partial x}=f_1'+f_2'\phi_1'+f_2'\phi_2'\psi_1'

    uz=f3+f2ϕ2ψ2\dfrac{\partial u}{\partial z}=f_3'+f_2'\phi_2'\psi_2'

8.4 复合函数求导
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00