-
求 u=ex+2y 的所有二阶偏导
解:
∂x∂u=ex+2y⋅1=ex+2y,∂y∂u=2⋅ex+2y
∂x2∂2u=ex+2y,∂y2∂2u=4ex+2y
∂x∂y∂2u=2ex+2y,∂y∂x∂2u=2ex+2y
-
f(x,y)=⎩⎨⎧xy⋅x2+y2x2−y2,x2+y2=00,x2+y2=0,求 fxy(0,0)、fyx(0,0)
解:
fx=⎩⎨⎧(x2+y2)2y(x4+4x2y2−y4)0x2+y2=0x2+y2=0
fxy(0,0)=Δy→0limΔyfx(0,0+Δy)−fx(0,0)=−1
同理
fy=⎩⎨⎧y⋅x2+y2x2−y2+xy(x2+y2)2−4xy40x2+y2=0x2+y2=0
fyx(0,0)=Δx→0limΔxfy(0+Δx,0)−fy(0,0)=1
-
u=x2y3ey+z−yzln(1+x2+y2+z2),求 uxx(0,1,−1)、uxy(1,−1,0)
解:
uxx(0,1,−1)=dx2d2u(x,1,−1)∣x=0=dx2d2[x2+ln(3+x2)]∣x=0=38
uxy(1,−1,0)=∂x∂y∂2u(x,y,0)∣x=1,y=−1=∂x∂y∂2(x2y3ey)∣x=1,y=−1=e4
-
u=x2+y2+z21,证明 uxx+uyy+uzz=0
证:ux=(−21)(x2+y2+z2)−23⋅2x=−x(x2+y2+z2)−23
uxx=−(x2+y2+z2)−23−x(−23)(x2+y2+z2)−25⋅2x=(x2+y2+z2)253x2−(x2+y2+z2)
uyy=(x2+y2+z2)253y2−(x2+y2+z2)
uzz=(x2+y2+z2)253z2−(x2+y2+z2)
uxx+uyy+uzz=0,得证