558 字
3 分钟
8.2 偏导数

§\S8.2 偏导数#

一、偏导数定义与计算#

  1. 定义:z=f(x,y)z=f(x,y)U(P0)U(P_0) 有定义,将 yy 固定于 y0y_0xxx0x_0 处有增量 Δx\Delta x 时,函数相应增量 Δz=f(x0+Δx,y0)f(x0,y0)\Delta z=f(x_0+\Delta x,y_0)-f(x_0,y_0)。若 limΔx0ΔzΔx\displaystyle \lim_{\Delta x\to 0}\dfrac{\Delta z}{\Delta x} 存在,则称此极限为 z=f(x,y)z=f(x,y) 在点 (x0,y0)(x_0,y_0) 处对变量 xx 的偏导数,记作 zxx=x0,y=y0\dfrac{\partial z}{\partial x}|_{x=x_0,y=y_0}fxx=x0,y=y0\dfrac{\partial f}{\partial x}|_{x=x_0,y=y_0}fx(x0,y0)f_x(x_0,y_0)

    • 类似地,称极限 limΔy0f(x0,y0+Δy)f(x0,y0)Δy\displaystyle \lim_{\Delta y\to 0}\dfrac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y}z=f(x,y)z=f(x,y) 在点 (x0,y0)(x_0,y_0) 处对变量 yy 的偏导数,记作 zyx=x0,y=y0\dfrac{\partial z}{\partial y}|_{x=x_0,y=y_0}fyx=x0,y=y0\dfrac{\partial f}{\partial y}|_{x=x_0,y=y_0}fy(x0,y0)f_y(x_0,y_0)
  2. 偏导函数

    • fx(x,y)=limΔx0f(x0+Δx,y)f(x,y)Δx=df(x,y0)dxx=x0\displaystyle f_x(x,y)=\lim_{\Delta x\to 0}\dfrac{f(x_0+\Delta x,y)-f(x,y)}{\Delta x}=\dfrac{\mathrm df(x,y_0)}{\mathrm dx}|_{x=x_0}(y看成常数)
    • fy(x,y)=limΔy0f(x,y0+Δy)f(x,y)Δy=df(x0,y)dyy=y0\displaystyle f_y(x,y)=\lim_{\Delta y\to 0}\dfrac{f(x,y_0+\Delta y)-f(x,y)}{\Delta y}=\dfrac{\mathrm df(x_0,y)}{\mathrm dy}|_{y=y_0}(x看成常数)

例题#

  1. 求以下各题的偏导

    1. z=arctanyxz=\arctan \dfrac{y}{x}

      解:zx=11+(yx)2y(1x2)=yx2+y2\dfrac{\partial z}{\partial x}=\dfrac{1}{1+(\dfrac{y}{x})^2}\cdot y\cdot (-\dfrac{1}{x^2})=-\dfrac{y}{x^2+y^2}

      zy=11+(yx)21x=xx2+y2\dfrac{\partial z}{\partial y}=\dfrac{1}{1+(\dfrac{y}{x})^2}\cdot \dfrac{1}{x}=\dfrac{x}{x^2+y^2}

    2. z=xyz=x^yx>0x\gt 0

      解:zx=yxy1\dfrac{\partial z}{\partial x}=yx^{y-1}zy=xylnx\dfrac{\partial z}{\partial y}=x^y\ln x

    3. f(x,y)=xyx2+y2f(x,y)=\dfrac{xy}{x^2+y^2}

      解:fx=y(x2+y2)xy2x(x2+y2)2=y3x2y(x2+y2)2f_x=\dfrac{y(x^2+y^2)-xy\cdot 2x}{(x^2+y^2)^2}=\dfrac{y^3-x^2y}{(x^2+y^2)^2}

      fy=x(x2+y2)xy2y(x2+y2)2=x3y2x(x2+y2)2f_y=\dfrac{x(x^2+y^2)-xy\cdot 2y}{(x^2+y^2)^2}=\dfrac{x^3-y^2x}{(x^2+y^2)^2}

      f(x,y)=f(y,x)f(x,y)=f(y,x)fx=φ(x,y)f_x=\varphi(x,y),则 fy=φ(y,x)f_y=\varphi(y,x)

  2. f(x,y)=x+(y1)arctanyxf(x,y)=x+(y-1)\arctan \dfrac{y}{x},求 fx(5,1)f_x(5,1)fy(5,1)f_y(5,1)

    解:fx(5,1)=ddxf(x,1)x=5=ddxxx=5=1f_x(5,1)=\dfrac{\mathrm d}{\mathrm dx}f(x,1)|_{x=5}=\dfrac{\mathrm d}{\mathrm dx}x|_{x=5}=1

    fy(5,1)=0+arctanyx+(y1)xx2+y2=arctan15f_y(5,1)=0+\arctan\dfrac{y}{x}+(y-1)\dfrac{x}{x^2+y^2}=\arctan\dfrac{1}{5}

  3. f(x,y)={xyx2+y2,(x,y)(0,0)0,(x,y)=(0,0)f(x,y)=\begin{cases}\dfrac{xy}{x^2+y^2},(x,y)\ne(0,0)\\0,(x,y)=(0,0)\end{cases}(0,0)(0,0) 间断,讨论 fx(0,0)f_x(0,0)fy(0,0)f_y(0,0) 是否存在

    解:

    fx(0,0)=limΔx0f(0+Δx,0)f(0,0)Δx=limΔx0Δx0(Δx)2+020Δx=0\begin{align*} f_x(0,0)&=\lim_{\Delta x\to 0}\dfrac{f(0+\Delta x,0)-f(0,0)}{\Delta x}\\ &=\lim_{\Delta x\to 0}\dfrac{\frac{\Delta x\cdot 0}{(\Delta x)^2+0^2}-0}{\Delta x}\\ &=0 \end{align*}

    同理 fy(0,0)=0f_y(0,0)=0,故两者均存在

  4. f(x,y)={sin(xy)yxy2,xy00,xy=0f(x,y)=\begin{cases}\dfrac{\sin(xy)-y}{xy^2},xy\ne 0\\0,xy=0\end{cases},求 fy(1,0)f_y(1,0)

    解:

    fy(1,0)=limΔy0f(1,0+Δy)f(1,0)Δy=limΔy0sinΔyΔy(Δy)3=limΔy0Δy(Δy)33!+o[(Δy)3]Δy(Δy)3=16\begin{align*} f_y(1,0)&=\lim_{\Delta y\to 0}\dfrac{f(1,0+\Delta y)-f(1,0)}{\Delta y}\\ &=\lim_{\Delta y\to 0}\dfrac{\sin \Delta y-\Delta y}{(\Delta y)^3}\\ &=\lim_{\Delta y\to 0}\dfrac{\Delta y-\frac{(\Delta y)^3}{3!}+o[(\Delta y)^3]-\Delta y}{(\Delta y)^3}\\ &=-\dfrac{1}{6} \end{align*}
  5. u=xzyzet2dt\displaystyle u=\int_{xz}^{yz}e^{t^2}\mathrm dt,求 ux\dfrac{\partial u}{\partial x}uy\dfrac{\partial u}{\partial y}uz\dfrac{\partial u}{\partial z}

    解: ux=e(xz)2z\dfrac{\partial u}{\partial x}=-e^{(xz)^2}\cdot z

    uy=e(yz)2z\dfrac{\partial u}{\partial y}=e^{(yz)^2}\cdot z

    uz=e(yz)2ye(xz)2x\dfrac{\partial u}{\partial z}=e^{(yz)^2}\cdot y-e^{(xz)^2}\cdot x

  6. PV=RTPV=RT(R为常数),证明:PVVTTP=1\dfrac{\partial P}{\partial V}\cdot \dfrac{\partial V}{\partial T}\cdot \dfrac{\partial T}{\partial P}=-1

    解: P=RTVPV=RT(1V2)P=R\dfrac{T}{V}\Rightarrow \dfrac{\partial P}{\partial V}=RT\cdot (-\dfrac{1}{V^2})

    V=RTPVT=RPV=\dfrac{RT}{P}\Rightarrow \dfrac{\partial V}{\partial T}=\dfrac{R}{P}

    T=PVRTP=VRT=\dfrac{PV}{R}\Rightarrow \dfrac{\partial T}{\partial P}=\dfrac{V}{R}

    以上三者相乘得 RTPV=1-\dfrac{RT}{PV}=-1,得证

一个二元函数连续但偏导不存在的例子:z=x2+y2z=\sqrt{x^2+y^2}

  • lim(x,y)(0,0)x2+y2=0=f(0,0)\displaystyle \lim_{(x,y)\to (0,0)}\sqrt{x^2+y^2}=0=f(0,0),连续
  • zx(0,0)=limΔx0(0+(Δx)2)+020Δx=limΔx0ΔxΔx\displaystyle z_x(0,0)=\lim_{\Delta x\to 0}\dfrac{\sqrt{(0+(\Delta x)^2)+0^2}-0}{\Delta x}=\lim_{\Delta x\to 0}\dfrac{|\Delta x|}{\Delta x},极限不存在
  • zy(0,0)z_y(0,0) 同理

二、高阶偏导数#

u=f(x,y)u=f(x,y)

  • uxx=fxx=f11=2ux2=x(ux)u_{xx}=f_{xx}=f''_{11}=\dfrac{\partial ^2u}{\partial x^2}=\dfrac{\partial}{\partial x}(\dfrac{\partial u}{\partial x}),对x求二阶偏导
  • uyy=fyy=f22=2uy2=y(uy)u_{yy}=f_{yy}=f''_{22}=\dfrac{\partial ^2u}{\partial y^2}=\dfrac{\partial}{\partial y}(\dfrac{\partial u}{\partial y}),对y求二阶偏导
  • uxy=fxy=f12=2uxy=y(ux)u_{xy}=f_{xy}=f''_{12}=\dfrac{\partial ^2u}{\partial x\partial y}=\dfrac{\partial}{\partial y}(\dfrac{\partial u}{\partial x}),先x后y
  • uyx=fyx=f21=2uyx=x(uy)u_{yx}=f_{yx}=f''_{21}=\dfrac{\partial ^2u}{\partial y\partial x}=\dfrac{\partial}{\partial x}(\dfrac{\partial u}{\partial y}),先y后x

大多数情况下,2uxy=2uyx\dfrac{\partial ^2u}{\partial x\partial y}=\dfrac{\partial ^2u}{\partial y\partial x}

定理:z=f(x,y)z=f(x,y) 的两个二阶混合偏导在定义域内连续,则在定义域内有 2zxy=2zyx\dfrac{\partial ^2z}{\partial x\partial y}=\dfrac{\partial ^2z}{\partial y\partial x}

推论:多元初等函数混合偏导可换序/相等

例题#

  1. u=ex+2yu=e^{x+2y} 的所有二阶偏导

    解:

    ux=ex+2y1=ex+2y\dfrac{\partial u}{\partial x}=e^{x+2y}\cdot 1=e^{x+2y}uy=2ex+2y\dfrac{\partial u}{\partial y}=2\cdot e^{x+2y}

    2ux2=ex+2y\dfrac{\partial ^2u}{\partial x^2}=e^{x+2y}2uy2=4ex+2y\dfrac{\partial ^2u}{\partial y^2}=4e^{x+2y}

    2uxy=2ex+2y\dfrac{\partial ^2u}{\partial x\partial y}=2e^{x+2y}2uyx=2ex+2y\dfrac{\partial ^2u}{\partial y\partial x}=2e^{x+2y}

  2. f(x,y)={xyx2y2x2+y2,x2+y200,x2+y2=0f(x,y)=\begin{cases}xy\cdot \dfrac{x^2-y^2}{x^2+y^2},x^2+y^2\ne 0\\0,x^2+y^2=0\end{cases},求 fxy(0,0)f_{xy}(0,0)fyx(0,0)f_{yx}(0,0)

    解:

    fx={y(x4+4x2y2y4)(x2+y2)2x2+y200x2+y2=0\begin{align*} f_x=\begin{cases} \dfrac{y(x^4+4x^2y^2-y^4)}{(x^2+y^2)^2}&\quad x^2+y^2\ne 0\\ 0&\quad x^2+y^2=0 \end{cases} \end{align*}

    fxy(0,0)=limΔy0fx(0,0+Δy)fx(0,0)Δy=1\displaystyle f_{xy}(0,0)=\lim_{\Delta y\to 0}\dfrac{f_x(0,0+\Delta y)-f_x(0,0)}{\Delta y}=-1

    同理

    fy={yx2y2x2+y2+xy4xy4(x2+y2)2x2+y200x2+y2=0\begin{align*} f_y=\begin{cases} y\cdot \dfrac{x^2-y^2}{x^2+y^2}+xy\dfrac{-4xy^4}{(x^2+y^2)^2} &\quad x^2+y^2\ne 0\\ 0&\quad x^2+y^2=0 \end{cases} \end{align*}

    fyx(0,0)=limΔx0fy(0+Δx,0)fy(0,0)Δx=1\displaystyle f_{yx}(0,0)=\lim_{\Delta x\to 0}\dfrac{f_y(0+\Delta x,0)-f_y(0,0)}{\Delta x}=1

  3. u=x2y3ey+zyzln(1+x2+y2+z2)u=x^2y^3e^{y+z}-yz\ln(1+x^2+y^2+z^2),求 uxx(0,1,1)u_{xx}(0,1,-1)uxy(1,1,0)u_{xy}(1,-1,0)

    解: uxx(0,1,1)=d2dx2u(x,1,1)x=0=d2dx2[x2+ln(3+x2)]x=0=83u_{xx}(0,1,-1)=\dfrac{\mathrm d^2}{\mathrm dx^2}u(x,1,-1)|_{x=0}=\dfrac{\mathrm d^2}{\mathrm dx^2}[x^2+\ln(3+x^2)]|_{x=0}=\dfrac{8}{3}

    uxy(1,1,0)=2xyu(x,y,0)x=1,y=1=2xy(x2y3ey)x=1,y=1=4eu_{xy}(1,-1,0)=\dfrac{\partial ^2}{\partial x\partial y}u(x,y,0)|_{x=1,y=-1}=\dfrac{\partial ^2}{\partial x\partial y}(x^2y^3e^y)|_{x=1,y=-1}=\dfrac{4}{e}

  4. u=1x2+y2+z2u=\dfrac{1}{\sqrt{x^2+y^2+z^2}},证明 uxx+uyy+uzz=0u_{xx}+u_{yy}+u_{zz}=0

    证:ux=(12)(x2+y2+z2)322x=x(x2+y2+z2)32u_x=(-\dfrac{1}{2})(x^2+y^2+z^2)^{-\frac{3}{2}}\cdot 2x=-x(x^2+y^2+z^2)^{-\frac{3}{2}}

    uxx=(x2+y2+z2)32x(32)(x2+y2+z2)522x=3x2(x2+y2+z2)(x2+y2+z2)52u_{xx}=-(x^2+y^2+z^2)^{-\frac{3}{2}}-x(-\dfrac{3}{2})(x^2+y^2+z^2)^{-\frac{5}{2}}\cdot 2x=\dfrac{3x^2-(x^2+y^2+z^2)}{(x^2+y^2+z^2)^{\frac{5}{2}}}

    uyy=3y2(x2+y2+z2)(x2+y2+z2)52u_{yy}=\dfrac{3y^2-(x^2+y^2+z^2)}{(x^2+y^2+z^2)^{\frac{5}{2}}}

    uzz=3z2(x2+y2+z2)(x2+y2+z2)52u_{zz}=\dfrac{3z^2-(x^2+y^2+z^2)}{(x^2+y^2+z^2)^{\frac{5}{2}}}

    uxx+uyy+uzz=0u_{xx}+u_{yy}+u_{zz}=0,得证

8.2 偏导数
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00