980 字
5 分钟
8.1 多元函数的基本概念

§\S8.1 多元函数的基本概念#

一、平面点集#

R2={(x,y)xRyR}E={(x,y)xy具有性质/关系Q}\begin{align*} R^2&=\{(x,y)|x\in R 且 y\in R\}\\ E&=\{(x,y)|x与y具有性质/关系Q\} \end{align*}

邻域#

P0(x0,y0)P_0(x_0,y_0)

  • U(P0,δ)={PP0P<δ}U(P_0,\delta)=\{P||P_0P|\lt \delta\}
  • U(P0)={(x,y)(xx0)2+(yy0)2<δ}U(P_0)=\{(x,y)|\sqrt{(x-x_0)^2+(y-y_0)^2}\lt \delta\}
  • U(P0,δ)\overset{\circ}{U}(P_0,\delta)U(P0)\overset{\circ}{U}(P_0)={P0<PP0<δ}={(x,y)0<(xx0)2+(yy0)2<δ}=\{P|0\lt|PP_0|\lt\delta\}=\{(x,y)|0\lt \sqrt{(x-x_0)^2+(y-y_0)^2}\lt \delta\}

内点、外点和边界点#

P0R2,ER2\forall P_0\in R^2,E\subseteq R^2P0P_0EE 具有

  • 内点:U(P0,δ),U(P0,δ)E\exists U(P_0,\delta), U(P_0,\delta)\subset E
  • 外点:U(P0,δ),U(P0,δ)E=\exists U(P_0,\delta), U(P_0,\delta)\cap E=\emptyset
  • 边界点:U(P0,δ)\forall U(P_0,\delta),既有E的点又有不属于E的点,其全体为 E\partial E

E的内点一定属于E,E的外点一定不属于E,E的边界点可能属于E。

例子#

E={(x,y)1x2+y2<2}E=\{(x,y)|1\le x^2+y^2\lt 2\}

  • 内点集合 E1={(x,y)1<x2+y2<2}E_1=\{(x,y)|1\lt x^2+y^2\lt 2\}
  • 外点集合 E2={(x,y)x2+y2<1x2+y2>2}E_2=\{(x,y)|x^2+y^2\lt 1或x^2+y^2\gt 2\}
  • 边界点集合 E={(x,y)x2+y2=1x2+y2=2}\partial E=\{(x,y)|x^2+y^2=1或x^2+y^2=2\}

聚点和孤立点#

  • 聚点:δ>0\forall \delta \gt 0U(P0,δ)\overset{\circ}{U}(P_0,\delta) 内总有E的点
    • 内点和非孤立的边界点
  • 孤立点:δ>0\exists \delta \gt 0U(P0,δ)E={P0}U(P_0,\delta)\cap E=\{P_0\}

例子#

E={(x,y)x2+y21}{(2,2)}E=\{(x,y)|x^2+y^2\le 1\}\cup\{(2,2)\}

内点集合 E1={(x,y)x2+y2<1}E_1=\{(x,y)|x^2+y^2\lt 1\}

E={(x,y)x2+y2=1}{(2,2)}\partial E=\{(x,y)|x^2+y^2=1\}\cup\{(2,2)\}

聚点集合 E={(x,y)x2+y21}E'=\{(x,y)|x^2+y^2\le 1\},孤立点是E的边界点

开集和闭集#

  • 开集:E的点都是E的内点
  • 闭集:E的余集为开集

例子#

  • E={(x,y)x2+y2<1}E=\{(x,y)|x^2+y^2\lt 1\} 是开集
  • E={(x,y)x2+y21}E=\{(x,y)|x^2+y^2\le 1\} 不是开集
  • R2={(x,y)xRyR}R^2=\{(x,y)|x\in R且y\in R\} 是开集也是闭集

有界集和无界集#

  • 有界集:δ>0,EU(O,δ)\exists \delta \gt 0, E\subset U(O,\delta),O为原点
  • 无界集:非有界集

“有界、无界”和”开集、闭集”无必然联系

连通集和非联通集#

  • 联通集:点集E内任何两点都可以用属于E的折线连接起来
  • 非联通集

开区域和闭区域#

  • 开区域:联通的开集
    • {(x,y)x>1}\{(x,y)|x\gt 1\},开区域
    • {(x,y)x>1}\{(x,y)||x|\gt 1\},开集,非开区域
  • 闭区域:开区域连同其边界
    • {(x,y)x1}\{(x,y)|x\ge 1\}

二、多元函数的定义#

定义:非空点集 DRnD\subseteq R^n,映射 f:DRf:D\rightarrow R 称为定义在 DD 上的n元函数,u=f(x1,x2,,xn)u=f(x_1,x_2,\cdots,x_n)DD 称为定义域

  • 二元函数:u=f(x,y)u=f(x,y)z=f(x,y)z=f(x,y),空间曲面 f(x,y,z)=0f(x,y,z)=0

#

z=1x2y2z=\sqrt{1-x^2-y^2}D:{(x,y)x2+y21}D:\{(x,y)|x^2+y^2\le 1\}

三、多元函数的极限#

二元函数 f(x,y)f(x,y)U(P0)\overset{\circ}{U}(P_0) 有定义(P0P_0 为聚点),ϵ>0\forall \epsilon \gt 0δ\exists \delta,当 0<(xx0)2+(yy0)2<δ0\lt \sqrt{(x-x_0)^2+(y-y_0)^2}\lt \delta 时,恒有 f(x,y)A<ϵ|f(x,y)-A|\lt \epsilon 成立。记 A=lim(x,y)(x0,y0)f(x,y)=limxx0,yy0f(x,y)=limPP0f(P)\displaystyle A=\lim_{(x,y)\to (x_0,y_0)}f(x,y)=\lim_{x\to x_0,y\to y_0}f(x,y)=\lim_{P\to P_0}f(P)

注:lim(x,y)(x0,y0)f(x,y)limyy0limxx0f(x,y)limxx0limyy0f(x,y)\displaystyle \lim_{(x,y)\to(x_0,y_0)}f(x,y)\ne \lim_{y\to y_0}\lim_{x\to x_0}f(x,y)\ne \lim_{x\to x_0}\lim_{y\to y_0}f(x,y)

lim(x,y)(x0,y0)f(x,y)ϕ1趋向】lim(x,y)(x0,y0)f(x,y)ϕ2趋向】\displaystyle \lim_{(x,y)\to(x_0,y_0)}f(x,y)【\phi_1 趋向】\ne \lim_{(x,y)\to(x_0,y_0)}f(x,y)【\phi_2 趋向】,则 f(x,y)f(x,y)P0(x0,y0)P_0(x_0,y_0) 极限不存在

例题#

  1. lim(x,y)(0,0)(x2+y2)sin1x2+y2\displaystyle \lim_{(x,y) \to (0,0)}(x^2+y^2)\sin\dfrac{1}{x^2+y^2}

    解: 法一:令 t=x2+y2t=x^2+y^2limt0+t0sin1t有界=0\displaystyle \lim_{t\to 0^+}\underset{0}{t}\underset{有界}{\sin \dfrac{1}{t}}=0

    法二:ϵδ\epsilon-\delta 定义。ϵ>0,δ\forall \epsilon \gt 0,\exists \delta,当 (x0)2+(y0)2<δ\sqrt{(x-0)^2+(y-0)^2}\lt \delta 时,(x2+y2)sin1x2+y2x2+y2<δ2=ϵ|(x^2+y^2)\sin \dfrac{1}{x^2+y^2}|\le x^2+y^2\lt \delta^2 =\epsilon

    δ=ϵ\delta =\sqrt{\epsilon} 可使原式成立

  2. lim(x,y)(0,0)(xsin1y+ysin1x)\displaystyle \lim_{(x,y) \to (0,0)}(x\sin\dfrac{1}{y}+y\sin\dfrac{1}{x})

    解:原式 =lim(x,y)(0,0)xsin1y+lim(x,y)(0,0)ysin1x=0+0=0=\displaystyle \lim_{(x,y) \to (0,0)}x\sin \dfrac{1}{y}+\lim_{(x,y) \to (0,0)}y\sin \dfrac{1}{x}=0+0=0

    证明:ϵ>0,δ,0<(x0)2+(y0)2<δ\forall \epsilon \gt 0, \exists \delta,0\lt \sqrt{(x-0)^2+(y-0)^2}\lt \delta

    xsin1y+ysin1x0xsin1y+ysin1xx+y2x2+y2<2δ=ϵ\begin{align*} |x\sin \dfrac{1}{y}+y\sin \dfrac{1}{x}-0|&\le |x\sin \dfrac{1}{y}|+|y\sin \dfrac{1}{x}|\\ &\le |x|+|y|\\ &\le 2\sqrt{x^2+y^2}\\ &\lt 2\delta = \epsilon \end{align*}

    δ=ϵ2\delta=\dfrac{\epsilon}{2} 可使原式成立

  3. lim(x,y)(0,0)2xyx2+y2\displaystyle \lim_{(x,y) \to (0,0)}\dfrac{2xy}{x^2+y^2}

    解:

    limy=kx(x,y)(0,0)2xyx2+y2=limx02xkxx2+k2x2=2kk2+1\begin{align*} \lim_{\overset{(x,y) \to (0,0)}{y=kx}}\dfrac{2xy}{x^2+y^2}&=\lim_{x\to 0}\dfrac{2xkx}{x^2+k^2x^2}\\ &=\dfrac{2k}{k^2+1} \end{align*}

    与k有关,故极限不存在

  4. lim(x,y)(0,0)2x2yx2+y2\displaystyle \lim_{(x,y) \to (0,0)}\dfrac{2x^2y}{x^2+y^2}

    解:由夹逼定理得知

    02x2yx2+y22x2y2xy=x\begin{align*} 0\le \left|\dfrac{2x^2y}{x^2+y^2}\right| \le \dfrac{2|x|^2|y|}{2|x||y|}=|x| \end{align*}

    lim(x,y)(0,0)f(x,y)=0\therefore \displaystyle \lim_{(x,y) \to (0,0)}f(x,y)=0

  5. lim(x,y)(0,0)(x2+y2)xy\displaystyle \lim_{(x,y) \to (0,0)} (x^2+y^2)^{xy}

    解:夹逼定理

    0xyln(x2+y2)x2+y22ln(x2+y2)\begin{align*} 0\le |xy\ln(x^2+y^2)|\le \left |\dfrac{x^2+y^2}{2}\ln(x^2+y^2)\right| \end{align*}

    原式 =lim(x,y)(0,0)exyln(x2+y2)=1\displaystyle =\lim_{(x,y)\to (0,0)}e^{xy\ln(x^2+y^2)}=1

  6. lim(x,y)(0,0)x2yx4+y2\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{x^2y}{x^4+y^2}

    解:limy=kx2(x,y)(0,0)f(x,y)=k1+k2\displaystyle \lim_{\overset{(x,y) \to (0,0)}{y=kx^2}}f(x,y)=\dfrac{k}{1+k^2},与k有关,所以极限不存在

  7. lim(x,y)(0,0)(x+y)3x2+y2\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{(|x|+|y|)^3}{x^2+y^2}

    解: 法一:夹逼定理

    0(x+y)3x2+y2(2x2+y2)3x2+y28x2+y2\begin{align*} 0\le \dfrac{(|x|+|y|)^3}{x^2+y^2}\le\dfrac{(2\sqrt{x^2+y^2})^3}{x^2+y^2}\le 8\sqrt{x^2+y^2} \end{align*}

    原式=0

    法二:x=ρcosθx=\rho \cos\thetay=ρsinθy=\rho \sin \theta

    原式 =limρ0+ρ3(cosθ+sinθ)3ρ2=limρ0+ρ无穷小(cosθ+sinθ)3有界=0\displaystyle =\lim_{\rho\to 0^+}\dfrac{\rho^3(|\cos \theta|+|\sin \theta|)^3}{\rho^2}=\lim_{\rho \to 0^+}\underset{无穷小}{\rho} \underset{有界}{(|\cos \theta|+|\sin \theta|)^3}=0

四、多元函数连续性#

二元函数连续性:若 lim(x,y)(0,0)f(x,y)=f(x0,y0)\displaystyle \lim_{(x,y) \to (0,0)}f(x,y)=f(x_0,y_0),则称 z=f(x,y)z=f(x,y)P0(x0,y0)P_0(x_0,y_0) 连续,否则间断

lim(x,y)(x0,y0)=[f(x,y)f(x0,y0)]=0\displaystyle \lim_{(x,y) \to (x_0,y_0)}=[f(x,y)-f(x_0,y_0)]=0

f(x,y)f(x0,y0)=f(x0+Δx,y0+Δy)f(x0,y0)f(x,y)-f(x_0,y_0)=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)

全增量 z=f(x,y)z=f(x,y)lim(Δx,Δy)(0,0)Δz=0\displaystyle \lim_{(\Delta x,\Delta y) \to (0,0)}\Delta z=0

例题#

  1. f(x,y)=2xyx2+y2f(x,y)=\dfrac{2xy}{x^2+y^2}(0,0)(0,0) 连续性如何?

    解:定义域D:{(x,y)x2+y20}\{(x,y)|x^2+y^2\ne 0\}

    f(x,y)={2xyx2+y2(x,y)(0,0)不存在(x,y)=(0,0)\begin{align*} f(x,y)=\begin{cases} \dfrac{2xy}{x^2+y^2}\quad &(x,y)\ne(0,0)\\ 不存在\quad &(x,y)=(0,0) \end{cases} \end{align*}

    \therefore(0,0)(0,0) 间断

  2. f(x,y)=2x2yx2+y2f(x,y)=\dfrac{2x^2y}{x^2+y^2}(0,0)(0,0) 连续性如何?

    解:D:{(x,y)x2+y20}\{(x,y)|x^2+y^2\ne 0\}

    f(x,y)={2x2yx2+y2(x,y)(0,0)0(x,y)=(0,0)\begin{align*} f(x,y)=\begin{cases} \dfrac{2x^2y}{x^2+y^2} \quad &(x,y)\ne(0,0)\\ 0 \quad &(x,y)=(0,0) \end{cases} \end{align*}

    \therefore(0,0)(0,0) 连续

  3. f(x,y)={xycos1x,x00,x=0f(x,y)=\begin{cases}\dfrac xy\cos \dfrac{1}{x},x\ne 0\\0, x=0\end{cases}(0,1)(0,1) 的连续性如何?

    解:f(0,1)=0f(0,1)=0

    x=0x=0 时,lim(x,y)(0,1)f(x,y)=0\displaystyle \lim_{(x,y)\to (0,1)}f(x,y)=0

    x0x\ne 0 时,lim(x,y)(0,1)x0ycos1x有界=0\displaystyle \lim_{(x,y)\to (0,1)}\underset{0}{x}y\underset{有界}{\cos \dfrac{1}{x}}=0

    lim(x,y)(0,1)f(x,y)=f(0,1)\therefore \displaystyle \lim_{(x,y)\to (0,1)}f(x,y)=f(0,1),连续

  4. limx0,y0x2+y2=02+02=0\displaystyle \lim_{x\to 0,y\to 0}\sqrt{x^2+y^2}=\sqrt{0^2+0^2}=0

连续函数性质#

对于有界闭区域上的二元连续函数,有如下性质

  1. 【有界性和最值性定理】f(P)f(P) 在有界闭区域 DD 上连续 M>0,PD,f(P)M\Rightarrow \exists M\gt 0,\forall P\in D,|f(P)|\le MP1,P2D,f(P1)=max{f(P)PD}\exists P_1,P_2\in D,f(P_1)=\max\{f(P)|P\in D\}f(P2)=min{f(P)PD}f(P_2)=\min\{f(P)|P\in D\}
  2. 【介值定理】μ[m,M],PD\forall \mu\in[m,M],\exists P\subseteq D 使得 f(P)=μf(P)=\mu(m为最小值,M为最大值)
  3. 【一致连续】ϵ>0,δ>0,P1,P2D\forall \epsilon \gt 0,\exists \delta \gt 0, \forall P_1,P_2\in D,只要 P1P2<δ|P_1P_2|\lt \delta,就有 f(P1)f(P2)<ϵ|f(P_1)-f(P_2)|\lt \epsilon
8.1 多元函数的基本概念
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00