675 字
3 分钟
7.4 函数的幂级数展开

§\S7.4 函数的幂级数展开#

泰勒公式

f(x)=f(x0)+f(x0)(xx0)++f(n)(x0)n!(xx0)n+Rn(x)\begin{align*} f(x)=f(x_0)+f'(x_0)(x- x_0)+\cdots+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x) \end{align*}

一、泰勒级数#

定义#

f(x)f(x)U(x0)U(x_0) 具有任意阶导数,则称

n=0an(xx0)n=f(x0)+f(x0)(xx0)++f(n)(x0)n!(xx0)+=f(x)\sum_{n=0}^\infty a_n(x-x_0)^n=f(x_0)+f'(x_0)(x-x_0)+\cdots+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)+\cdots =f(x)

(其中 an=1n!f(n)(x0)a_n=\dfrac{1}{n!}f^{(n)}(x_0))为函数 f(x)f(x) 的泰勒级数

易知:在 x=x0x=x_0 处,泰勒级数收敛于 f(x0)f(x_0)

定理1. 已知 f(x)f(x)U(x0)U(x_0) 内任意可导,f(x)f(x) 可展开为泰勒级数 limnRn(x)=0\Leftrightarrow \displaystyle \lim_{n\to \infty}R_n(x)=0

证明:

s(x)=f(x0)+11!f(x0)(xx0)++1n!f(n)(x0)(xx0)n+s(x)=f(x_0)+\dfrac{1}{1!}f'(x_0)(x-x_0)+\cdots+\dfrac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\cdotsxx\in 收敛域

f(x)=f(x0)++1n!(xx0)nf(n)(x0)sn(x)+Rn(x)f(x)=\underbrace{f(x_0)+\cdots+\dfrac{1}{n!}(x-x_0)^nf^{(n)}(x_0)}_{s_n(x)} +R_n(x)

limnsn(x)=s(x)\displaystyle \lim_{n\to \infty}s_n(x)=s(x)

  • 充分性:f(x)=s(x)f(x)=s(x)s(x)=sn(x)+Rn(x)s(x)=s_n(x)+R_n(x)

    两边求极限,s(x)=s(x)+limnRn(x)limnRn(x)=0\displaystyle s(x)=s(x)+\lim_{n\to \infty}R_n(x) \Rightarrow \lim_{n\to \infty}R_n(x)=0

  • 必要性:s(x)=sn(x)+Rn(x)s(x)=s_n(x)+R_n(x)

    两边求极限:limnsn(x)=s(x)+0\displaystyle \lim_{n\to \infty}s_n(x)=s(x)+0

    limxsn(x)=s(x)\displaystyle \lim_{x \to \infty}s_n(x)=s(x)

函数展开成幂级数的方法#

  1. 直接法:先求各阶导数,然后讨论 limnRn(x)\displaystyle \lim_{n\to \infty} R_n(x) 在收敛域内是否恒为零

  2. 间接法

    f(x)=a0+a1(xx0)++an(xx0)n+x收敛域\begin{align*} f(x)=a_0+a_1(x-x_0)+\cdots+a_n(x-x_0)^n+\cdots\\ x\in 收敛域 \end{align*}

    定理:f(x)f(x) 可展开为幂级数 \Rightarrow 形式唯一

    an=1n!f(n)(x0)a_n=\dfrac{1}{n!}f^{(n)}(x_0)

常用的麦克劳林级数#

  1. ex=1+11!x+12!x2++1n!xn+=n=01n!xn,x(,+)\displaystyle e^x=1+\dfrac{1}{1!}x+\dfrac{1}{2!}x^2+\cdots+\dfrac{1}{n!}x^n+\cdots=\sum_{n=0}^\infty \dfrac{1}{n!}x^n,x\in(-\infty,+\infty)
  2. sinx=n=1(1)n1(2n1)!x2n1=n=0(1)n(2n+1)!x2n+1,x(,+)\displaystyle \sin x=\sum_{n=1}^\infty \dfrac{(-1)^{n-1}}{(2n-1)!}x^{2n-1}=\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)!}x^{2n+1},x\in(-\infty,+\infty)
  3. cosx=n=1(1)n1(2n2)!x2n2=n=0(1)n(2n)!x2n,x(,+)\displaystyle \cos x=\sum_{n=1}^\infty \dfrac{(-1)^{n-1}}{(2n-2)!}x^{2n-2}=\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n)!}x^{2n},x\in(-\infty,+\infty)
  4. (1+x)m=1+m1!x+m(m1)2!x2++m(m1)(mn+1)n!xn+,x(1,1)(1+x)^m=1+\dfrac{m}{1!}x+\dfrac{m(m-1)}{2!}x^2+\cdots+\dfrac{m(m-1)\cdots(m-n+1)}{n!}x^n+\cdots,x\in(-1,1)
    1. [m=1m=-1] 11+x=n=1(x)n=1x+x2x3++(1)nxn+\displaystyle \dfrac{1}{1+x}=\sum_{n=1}^\infty (-x)^n=1-x+x^2-x^3+\cdots+(-1)^nx^n+\cdots
    2. 11x=n=0xn=1+x+x2+x3++xn+\displaystyle \dfrac{1}{1-x}=\sum_{n=0}^\infty x^n=1+x+x^2+x^3+\cdots+x^n+\cdots

例题#

  1. f(x)=exf(x)=e^x 展开为 xx 的幂级数(麦克劳林级数/在 x=0x=0 处展开成泰勒级数)

    解:【直接法】

    • 求导 (ex)(n)=ex(e^x)^{(n)}=e^xan=1n!a_n=\dfrac{1}{n!},收敛半径 R=+R=+\infty,收敛域 (,+)(-\infty,+\infty)

      ex1+11!x+12!x2++1n!xn+e^x\sim 1+\dfrac{1}{1!}x+\dfrac{1}{2!}x^2+\cdots+\dfrac{1}{n!}x^n+\cdots

    • 证明 limnRn(x)=0\displaystyle \lim_{n\to\infty}R_n(x)=0

      Rn(x)=1(n+1)!eξxn+1R_n(x)=\dfrac{1}{(n+1)!}e^\xi x^{n+1}ξ\xi 介于 0 和 x 之间)

      考虑 n=01(n+1)!xn+1\displaystyle \sum_{n=0}^\infty\dfrac{1}{(n+1)!}|x|^{n+1}

      ρ=limn1(n+2)!xn+21(n+1)!xn+1=limnxn+2=0<1\because \rho=\displaystyle \lim_{n\to \infty}\left|\dfrac{\frac{1}{(n+2)!}|x|^{n+2}}{\frac{1}{(n+1)!}|x|^{n+1}}\right|=\lim_{n\to \infty}\dfrac{|x|}{n+2}=0\lt 1

      n=0xn+1(n+1)!\therefore \displaystyle \sum_{n=0}^\infty \dfrac{|x|^{n+1}}{(n+1)!} 收敛,limn1(n+1)!xn+1=0\displaystyle \lim_{n\to \infty}\dfrac{1}{(n+1)!}|x|^{n+1}=0

      0Rn(x)ex(n+1)!xn+10\le |R_n(x)|\le \dfrac{e^{|x|}}{(n+1)!}|x|^{n+1},根据夹逼定理,limnRn(x)=0=limnRn(x)\displaystyle \lim_{n\to \infty}|R_n(x)|=0=\lim_{n\to \infty}R_n(x),得证

      ex=n=0xnn!,x(,+)\displaystyle e^x=\sum_{n=0}^\infty \dfrac{x^n}{n!},x\in(-\infty,+\infty)

  2. 证明上述麦克劳林级数公式4

    解:f(x)=m(1+x)m1f'(x)=m(1+x)^{m-1}

    f(x)=m(m1)(1+x)m2f''(x)=m(m-1)(1+x)^{m-2},依此类推

    f(n)(0)=m(m1)(mn+1)f^{(n)}(0)=m(m-1)\cdots(m-n+1)

    s(x)=1+m1!x++m(m1)(mn+1)n!xn+s(x)=1+\dfrac{m}{1!}x+\cdots+\dfrac{m(m-1)\cdots(m-n+1)}{n!}x^n+\cdots

    s(x)=f(x)s(x)=f(x)

    s(x)=0+m+m(m1)1!x+m(m1)(m2)2!x2+=m[1+m(m1)1!x+m(m1)(m2)2!x2+m(m1)(m2)(m3)3!x3+]=ms1(x)s1(x)=1+m11!x+(m1)(m2)2!x2+xs1(x)=x+(m1)1!x2+\begin{align*} s'(x)&=0+m+\dfrac{m(m-1)}{1!}x+\dfrac{m(m-1)(m-2)}{2!}x^2+\cdots\\ &=m[1+\dfrac{m(m-1)}{1!}x+\dfrac{m(m-1)(m-2)}{2!}x^2+\dfrac{m(m-1)(m-2)(m-3)}{3!}x^3+\cdots]\\ &=ms_1(x)\\ s_1(x)&=1+\dfrac{m-1}{1!}x+\dfrac{(m-1)(m-2)}{2!}x^2+\cdots\\ xs_1(x)&=x+\dfrac{(m-1)}{1!}x^2+\cdots \end{align*}

    (1+x)s1(x)=s(x)(1+x)s_1(x)=s(x)

    s(x)(1+x)=ms(x)s(x)=c(1+x)ms'(x)(1+x)=ms(x)\Rightarrow s(x)=c(1+x)^m

    s(0)=1\because s(0)=1

    C=1\therefore C=1s(x)=(1+x)m=f(x)s(x)=(1+x)^m=f(x)

  3. f(x)=ex2f(x)=e^{x^2} 展开成麦克劳林级数

    ex=n=01n!xn\displaystyle e^x=\sum_{n=0}^\infty \dfrac{1}{n!}x^n

    ex2=n=01n!(x2)n=n=01n!x2n\displaystyle e^{x^2}=\sum_{n=0}^\infty \dfrac{1}{n!}(x^2)^n=\sum_{n=0}^\infty \dfrac{1}{n!}x^{2n}x(,+)x\in(-\infty,+\infty)

  4. f(x)=exf(x)=e^x 展开成 (x1)(x-1) 的幂级数

    ex=eex1=en=01n!(x1)n=n=0e(x1)nn!,x(,+)\begin{align*} e^x&=e\cdot e^{x-1}\\ &=e\cdot \sum_{n=0}^\infty \dfrac{1}{n!}(x-1)^n\\ &=\sum_{n=0}^\infty \dfrac{e(x-1)^n}{n!},x\in(-\infty,+\infty) \end{align*}
  5. ln(1+x)\ln(1+x) 展开为 xx 的幂级数

    [ln(1+x)]=11+xn=0(1)nxn,x(1,1)\displaystyle [\ln(1+x)]'=\dfrac{1}{1+x}\sum_{n=0}^\infty (-1)^nx^n,x\in(-1,1)

    0x[ln(1+x)]dt=0xn=0(1)ntndt\displaystyle \int_0^x [\ln(1+x)]' \mathrm dt=\int_0^x \sum_{n=0}^\infty (-1)^nt^n \mathrm dt

    ln(1+x)ln(1+0)=n=0(1)n1n+1xn+1\displaystyle \ln(1+x)-\ln(1+0)=\sum_{n=0}^\infty (-1)^n\dfrac{1}{n+1}x^{n+1}

    ln(1+x)=n=0(1)n1n+1xn+1\displaystyle \ln(1+x)=\sum_{n=0}^\infty (-1)^n\dfrac{1}{n+1}x^{n+1},收敛域 (1,1](-1,1]

  6. ln(2+x)\ln(2+x) 展开为 xx 的幂级数

    原式=ln[2(1+x2)]=ln2+ln(1+x2)=ln2+n=0(1)n1n+1(12)n+1xn+1x(2,0]\begin{align*} 原式 &=\ln\left[2(1+\dfrac{x}{2})\right]\\ &=\ln 2+\ln(1+\dfrac{x}{2})\\ &=\ln 2+\sum_{n=0}^\infty (-1)^n\dfrac{1}{n+1}\cdot\left(\dfrac{1}{2}\right)^{n+1}x^{n+1},x\in(-2,0] \end{align*}
  7. f(x)=arctanxf(x)=\arctan x 展开为 xx 的幂级数

    f(x)=11+x2=n=0(1)nx2n,x(1,1)\displaystyle f'(x)=\dfrac{1}{1+x^2}=\sum_{n=0}^\infty (-1)^nx^{2n}, x\in(-1,1)

    积分,得

    0xf(t)dt=0xn=0(1)nt2ndt\displaystyle \int_0^xf'(t)\mathrm dt=\int_0^x \sum_{n=0}^\infty (-1)^nt^{2n}\mathrm dt

    arctanx=n=0(1)n12n+1x2n+1,x[1,1]\displaystyle \arctan x=\sum_{n=0}^\infty (-1)^n\dfrac{1}{2n+1}x^{2n+1}, x\in[-1,1]

    x=±1x=\pm 1 时,原级数收敛)

  8. f(x)=arctan1+x1xf(x)=\arctan \dfrac{1+x}{1-x} 展开为 xx 的幂级数

    f(x)=11+(1+x1x)21(1x)(1+x)(1)(1x)2=11+x2=n=0(1)nx2n,x(1,1)\begin{align*} f'(x)&=\dfrac{1}{1+\left(\frac{1+x}{1-x}\right)^2}\cdot \dfrac{1\cdot (1-x)-(1+x)\cdot(-1)}{(1-x)^2}\\ &=\dfrac{1}{1+x^2}=\sum_{n=0}^\infty (-1)^nx^{2n}, x\in(-1,1) \end{align*}

    0xf(t)dt=n=0(1)n12n+1x2n+1,x[1,1]\displaystyle \int_0^xf'(t)\mathrm dt=\sum_{n=0}^\infty (-1)^n\dfrac{1}{2n+1}x^{2n+1}, x\in[-1,1]x=±1x=\pm 1 原级数收敛)

    f(x)=π4+n=0(1)n12n+1x2n+1,x[1,1)\displaystyle f(x)=\dfrac{\pi}{4}+\sum_{n=0}^\infty (-1)^n\dfrac{1}{2n+1}x^{2n+1}, x\in[-1,1)(在 x=1x=1 不连续)

  9. f(x)=1xf(x)=\dfrac{1}{x} 展开为 x2x-2 的幂级数

    解:11+x=n=0(1)nxn,x(1,1)\displaystyle \dfrac{1}{1+x}=\sum_{n=0}^\infty (-1)^nx^n,x\in(-1,1)

    f(x)=12+x2=1211+x22=12n=0(1)n(x22)n=n=0(1)n(12)n+1(x2)n,x(0,4)\begin{align*} f(x)&=\dfrac{1}{2+x-2}\\ &=\dfrac{1}{2}\cdot\dfrac{1}{1+\frac{x-2}{2}}\\ &=\dfrac{1}{2}\sum_{n=0}^\infty (-1)^n(\dfrac{x-2}{2})^n\\ &=\sum_{n=0}^\infty(-1)^n(\dfrac{1}{2})^{n+1}(x-2)^n,x\in(0,4) \end{align*}
  10. f(x)=1x2f(x)=\dfrac{1}{x^2} 展开为 x2x-2 的幂级数

    解:(1x)=1x2(-\dfrac{1}{x})'=\dfrac{1}{x^2},先积分后求导

    1x2=[n=0(12)n+1(x2)n]=n=0(12)n+1n(x2)n1,x(0,4)\begin{align*} \dfrac{1}{x^2}&=[\sum_{n=0}^\infty (-\dfrac{1}{2})^{n+1}(x-2)^n]'\\ &=\sum_{n=0}^\infty (\dfrac{1}{2})^{n+1}n(x-2)^{n-1},x\in(0,4) \end{align*}
  11. f(x)=1x2+3x+2f(x)=\dfrac{1}{x^2+3x+2} 展开为 x+4x+4 的幂级数

    解:

    f(x)=1(x+1)(x+2)=1x+11x+2=13+x+412+x+4=1311x+43+1211x+42=13n=0(x+43)n+12n=0(x+42)n=n=0[(12)n+1(13)n+1](x+4)n,x(6,2)\begin{align*} f(x)&=\dfrac{1}{(x+1)(x+2)}\\ &=\dfrac{1}{x+1}-\dfrac{1}{x+2}\\ &=\dfrac{1}{-3+x+4}-\dfrac{1}{-2+x+4}\\ &=-\dfrac{1}{3}\cdot \dfrac{1}{1-\frac{x+4}{3}}+\dfrac{1}{2}\cdot \dfrac{1}{1-\frac{x+4}{2}}\\ &=-\dfrac{1}{3}\sum_{n=0}^\infty (\dfrac{x+4}{3})^n+\dfrac{1}{2}\sum_{n=0}^\infty (\dfrac{x+4}{2})^n\\ &=\sum_{n=0}^\infty [(\dfrac{1}{2})^{n+1}-(\dfrac{1}{3})^{n+1}](x+4)^n,x\in(-6,-2) \end{align*}
  12. f(x)=1x2+3x+2f(x)=\dfrac{1}{x^2+3x+2} 展开为 x+32x+\dfrac{3}{2} 的幂级数

    解:

    原式=1(x+32)214=4×114(x+32)2=4n=0[4(x+32)2]n,x(72,12)\begin{align*} 原式 &=\dfrac{1}{(x+\frac{3}{2})^2-\frac{1}{4}}\\ &=-4\times \dfrac{1}{1-4(x+\frac{3}{2})^2}\\ &=-4\sum_{n=0}^\infty [4(x+\dfrac{3}{2})^2]^n,x\in(-\dfrac{7}{2},\dfrac{1}{2}) \end{align*}

二、泰勒级数的应用#

  1. 求极限
  2. 近似计算
  3. 欧拉公式
    • cosx=eix+eix2\cos x=\dfrac{e^{ix}+e^{-ix}}{2}
    • sinx=eixeix2i\sin x=\dfrac{e^{ix}-e^{-ix}}{2i}
    • (cosx+isinx)n=(eix)n=ei(nx)=cosnx+isinnx(\cos x+i\sin x)^n=(e^{ix})^n=e^{i(nx)}=\cos nx+i\sin nx

例题#

  1. 近似计算 ln3\ln 3

    解:

    ln3=ln32ln12=ln1+12112=2×12+2×(12)33+2×(12)55+=1+112+180+1.0958\begin{align*} \ln 3&=\ln\dfrac{3}{2}-\ln\dfrac{1}{2}\\ &=\ln\dfrac{1+\frac{1}{2}}{1-\frac{1}{2}}\\ &=2\times \dfrac{1}{2}+\dfrac{2\times(\frac{1}{2})^3}{3}+\dfrac{2\times(\frac{1}{2})^5}{5}+\cdots\\ &=1+\dfrac{1}{12}+\dfrac{1}{80}+\cdots\\ &\approx 1.0958 \end{align*}
  2. f(x)=exsinxf(x)=e^x\sin x 展开为麦克劳林级数

    解:

    ex=(cosx+isinx)=e(1+i)x=n=01n![(1+i)x]n=n=01n!(1+i)nxn=n=01n![2(22+i22)]nxn=n=01n!(2)n(cosπ4+isinπ4)nxn=n=01n!(2)n(cosnπ4+isinnπ4)xn\begin{align*} e^x&=(\cos x+i\sin x)\\ &=e^{(1+i)x}\\ &=\sum_{n=0}^\infty \dfrac{1}{n!} [(1+i)x]^n\\ &=\sum_{n=0}^\infty \dfrac{1}{n!} (1+i)^nx^n\\ &=\sum_{n=0}^\infty \dfrac{1}{n!} \left[\sqrt{2}\cdot \left(\dfrac{\sqrt{2}}{2}+i\cdot \dfrac{\sqrt{2}}{2}\right)\right]^nx^n\\ &=\sum_{n=0}^\infty \dfrac{1}{n!} (\sqrt{2})^n(\cos \dfrac{\pi}{4}+i\sin \dfrac{\pi}{4})^nx^n\\ &=\sum_{n=0}^\infty \dfrac{1}{n!} (\sqrt{2})^n(\cos \dfrac{n\pi}{4}+i\sin \dfrac{n\pi}{4})x^n \end{align*}

    f(x)=n=01n!(2)nsinnπ4xn,x(,+)\displaystyle f(x)=\sum_{n=0}^\infty \dfrac{1}{n!}(\sqrt{2})^n\sin\dfrac{n\pi}{4}x^n,x\in(-\infty,+\infty)

7.4 函数的幂级数展开
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00