302 字
2 分钟
6.4 一阶线性微分方程

§\S6.4 一阶线性微分方程#

dydx+p(x)y=q(x)\begin{align*} \dfrac{\mathrm dy}{\mathrm dx}+p(x)\cdot y=q(x) \end{align*}

q(x)=0q(x)=0时,称为齐次方程;q(x)0q(x)\ne 0时,称为非齐次方程。

一、常数变易法#

  1. 求齐次方程的通解
y=Cy1(x)=Cp(x)dx\begin{align*} y=Cy_1(x)=C^{-\int p(x)\mathrm dx} \end{align*}
  1. y=c(x)y1y=c(x)\cdot y_1,并代入原微分方程
C(x)y1+C(x)dy1dx+p(x)C(x)y1=q(x)C(x)y1+C(x)[dy1dx+p(x)y1]=q(x)C(x)=q(x)y1C(x)=q(x)y1dx+C\begin{align*} C'(x)y_1+C(x)\dfrac{\mathrm dy_1}{\mathrm dx}+p(x)C(x)y_1&=q(x)\\ C'(x)y_1+C(x)[\dfrac{\mathrm dy_1}{\mathrm dx}+p(x)y_1]&=q(x)\\ C'(x)&=\dfrac{q(x)}{y_1}\\ C(x)&=\int \dfrac{q(x)}{y_1}\mathrm dx+C \end{align*}
  1. 回代,得到非齐次方程通解
y=Cy1齐次通解+y11y1q(x)dx非齐次通解\begin{align*} y=\underset{齐次通解}{Cy_1}+\underset{非齐次通解}{y_1\int \dfrac{1}{y_1}q(x)\mathrm dx} \end{align*}

二、例题#

  1. 解方程 (x+1)dydxny=ex(x+1)n+1(x+1)\dfrac{\mathrm dy}{\mathrm dx}-ny=e^x(x+1)^{n+1},其中 nn 是一个常数

解:先求齐次方程通解,(x+1)dydx=ny(x+1)\dfrac{\mathrm dy}{\mathrm dx}=nydyy=nx+1dx\dfrac{\mathrm dy}{y}=\dfrac{n}{x+1}\mathrm dxy=C(x+1)ny=C(x+1)^n

再令 y=C(x)(x+1)ny=C(x)(x+1)^n

(x+1)[C(x)(x+1)n)+C(x)n(x+1)n1]nC(x)(x+1)n=ex(x+1)n+1C(x)(x+1)n+1=ex(x+1)n+1C(x)=exC(x)=ex+C\begin{align*} (x+1)[C'(x)(x+1)^n)+C(x)n(x+1)^{n-1}]-nC(x)(x+1)^n&=e^x(x+1)^{n+1}\\ C'(x)(x+1)^{n+1}&=e^x(x+1)^{n+1}\\ C'(x)&=e^x\\ C(x)&=e^x+C \end{align*}

y=(ex+C)(x+1)n\therefore y=(e^x+C)(x+1)^n

  1. 解伯努利微分方程(Bernoulli differential equation) dydx+p(x)y=Q(x)yn(n0,1)\dfrac{\mathrm dy}{\mathrm dx}+p(x)\cdot y=Q(x)y^n\quad (n \ne 0,1)

解:两边除以 yny^n

1yndydx+p(x)y1n=Q(x)11ndy1ndx+p(x)y1n=Q(x)\begin{align*} \dfrac{1}{y^n}\dfrac{\mathrm dy}{\mathrm dx}+p(x)y^{1-n}&=Q(x)\\ \dfrac{1}{1-n}\dfrac{\mathrm dy^{1-n}}{\mathrm dx}+p(x)y^{1-n}&=Q(x) \end{align*}

z=y1nz=y^{1-n},则 11ndzdx+p(x)z=Q(x)\dfrac{1}{1-n}\dfrac{\mathrm dz}{\mathrm dx}+p(x)z=Q(x),回代:

y=ep(x)dx[(1n)Q(x)e(1n)p(x)dxdx+C]y=0\begin{align*} y=e^{\int p(x)\mathrm dx}\left[\int (1-n)Q(x)e^{(1-n)\int p(x)\mathrm dx}\mathrm dx+C\right] 和 y=0 \end{align*}
  1. 解方程 (1+y2)dx+(xarctany)dy=0(1+y^2)\mathrm dx+(x-\arctan y)\mathrm dy=0

解:

dydx=1+y2arctanyxdxdy=arctany1+y2x1+y2\begin{align*} \dfrac{\mathrm dy}{\mathrm dx}=\dfrac{1+y^2}{\arctan y-x}\leftrightarrow \dfrac{\mathrm dx}{\mathrm dy}=\dfrac{\arctan y}{1+y^2}-\dfrac{x}{1+y^2} \end{align*}

dxdy=x1+y2+arctanyd(arctany)\dfrac{\mathrm dx}{\mathrm dy}=-\dfrac{x}{1+y^2}+\arctan y \mathrm d(\arctan y)

t=arctanyt=\arctan y,则 dxdt+x=t\dfrac{\mathrm dx}{\mathrm dt}+x=t,解得 x=t1+Cetx=t-1+Ce^t

x=arctany1+Cearctany\therefore x=\arctan y-1+Ce^{\arctan y}

  1. 解方程 dydx=x4+y3xy2(=1xy+x3y2)\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{x^4+y^3}{xy^2}(=\dfrac{1}{x}y+x^3y^{-2})

解:p(x)=1x,Q(x)=x3,z=y1(2)=y3p(x)=-\dfrac{1}{x}, Q(x)=x^3, 令 z=y^{1-(-2)}=y^3

原式转化为 \dfrac{\mathrm dz}{\mathrm dx}+3\cdot (-\dfrac{1}{x})\cdot z=3x^3 \tag{1}

dzdx=3zx\dfrac{\mathrm dz}{\mathrm dx}=3\dfrac{z}{x}z=Cx3z=Cx^3

z=C(x)x3z=C(x)\cdot x^3,代回 1 得

C(x)x3+C(x)3x23C(x)x2=3x3C(x)=3x+C\begin{align*} C'(x)x^3+C(x)3x^2-3C(x)\cdot x^2&=3x^3\\ C(x)&=3x+C \end{align*}

y=x(3x+C)13\therefore y=x(3x+C)^{\frac{1}{3}}

  1. 解方程 dydx=ey+3xx2\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{e^y+3x}{x^2}

解:

eydydx=1+3xeyx2d(ey)dx=1+3xeyx2\begin{align*} \dfrac{e^{-y}\mathrm dy}{\mathrm dx}&=\dfrac{1+3xe^{-y}}{x^2}\\ \dfrac{\mathrm d(e^{-y})}{\mathrm dx}&=-\dfrac{1+3xe^{-y}}{x^2} \end{align*}

z=eyz=e^{-y}dzdx=1+3xzx2\dfrac{\mathrm dz}{\mathrm dx}=-\dfrac{1+3xz}{x^2}

xz=uxz=u

dxx=du4u+1lnx=14ln4u+1+Cx=C1(4u+1)14\begin{align*} \dfrac{\mathrm dx}{x}&=\dfrac{\mathrm du}{4u+1}\\ \ln |x|&=\dfrac{1}{4}\ln |4u+1|+C\\ x&=C_1(4u+1)^{\frac{1}{4}} \end{align*}

代回得 x=C1(4xey+1)14x=C_1(4xe^{-y}+1)^{\frac{1}{4}}

6.4 一阶线性微分方程
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00