294 字
1 分钟
6.3 齐次方程

§\S6.3 齐次方程#

一、齐次方程#

形如 dydx=f(yx)\dfrac{\mathrm dy}{\mathrm dx}=f(\dfrac{y}{x}) 的方程称为齐次方程

u=yxu=\dfrac{y}{x},则 y=xuy=xudy=udx+xdu\mathrm dy=u \mathrm dx+x \mathrm du

dydx=u+xdudx=f(u)\dfrac{\mathrm dy}{\mathrm dx}=u+x\dfrac{\mathrm du}{\mathrm dx}=f(u)

1f(u)udu=1xdx\dfrac{1}{f(u)-u}\mathrm du=\dfrac{1}{x}\mathrm dx

两边积分,通过分离变量法后回代得通解

别忘讨论 f(u)=uf(u)=u 是否有解

#

  1. dydx=yx+tanyx\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{y}{x}+\tan\dfrac{y}{x}

    解:令 u=yxu=\dfrac{y}{x},则 y=xuy=xuu+xdudx=u+tanuu+x\dfrac{\mathrm du}{\mathrm dx}=u+\tan u

    1tanudu=1xdx\dfrac{1}{\tan u}\mathrm du=\dfrac{1}{x}\mathrm dx

    两边积分得

    lntanu=lnx+Ctanux=ec=C1tanu=C1xtanyx=C1x\begin{align*} \ln |\tan u|&=\ln|x|+C\\ |\dfrac{\tan u}{x}|&=e^c=C_1\\ \tan u&=C_1x\\ \tan \dfrac{y}{x}&=C_1x \end{align*}
  2. (y22xy)dx+x2dy=0(y^2-2xy)\mathrm dx+x^2 \mathrm dy=0

    解:令 u=yxu=\dfrac{y}{x},则 y=xuy=xudy=udx+xdu\mathrm dy=u \mathrm dx+x \mathrm du

    (y22xy)dx+x2udx+x3du=0(y22xy+x2u)dx+x3du=0x2(u22u+u)dx+x3du=01u2udu+1xdx=0lnu1u+lnx=Clnyxy+lnx=Cx(yx)y=ec=C1x(yx)=C2yx=0,y=0\begin{align*} (y^2-2xy)\mathrm dx+x^2u \mathrm dx+x^3 \mathrm du&=0\\ (y^2-2xy+x^2u)\mathrm dx+x^3 \mathrm du&=0\\ x^2(u^2-2u+u)\mathrm dx+x^3 \mathrm du&=0\\ \int\dfrac{1}{u^2-u}\mathrm du+\int \dfrac{1}{x}\mathrm dx&=0\\ \ln |\dfrac{u-1}{u}|+\ln |x|&=C\\ \ln |\dfrac{y-x}{y}|+\ln|x|&=C\\ |\dfrac{x(y-x)}{y}|&=e^c=C_1\\ x(y-x)=C_2y&和x=0,y=0 \end{align*}

二、可化为齐次方程的方程#

形如 dydx=ax+by+ca1x+b1y+c1\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{ax+by+c}{a_1x+b_1y+c_1}dydx=f(ax+by+ca1x+b1y+c1)\dfrac{\mathrm dy}{\mathrm dx}=f(\dfrac{ax+by+c}{a_1x+b_1y+c_1}) 的方程

{x=X+h,dx=dXy=Y+k,dy=dY\begin{cases}x=X+h,\mathrm dx=\mathrm dX\\y=Y+k,\mathrm dy=\mathrm dY\end{cases}

dXdY=dxdy=aX+bY+(ah+bk+C)a1X+b1Y+(a1h+b1k+C1)\dfrac{\mathrm dX}{\mathrm dY}=\dfrac{\mathrm dx}{\mathrm dy}=\dfrac{aX+bY+(ah+bk+C)}{a_1X+b_1Y+(a_1h+b_1k+C_1)}

{ah+bk+C=0a1h+b1k+C1=0\begin{cases}ah+bk+C=0\\a_1h+b_1k+C_1=0\end{cases},找到合适的h,k使得 dXdY=aX+bYa1X+b1Y\dfrac{\mathrm dX}{\mathrm dY}=\dfrac{aX+bY}{a_1X+b_1}Y

  1. aba1b10\left|\begin{array}{cccc}a&b\\a_1&b_1\end{array}\right|\ne 0,由克拉默法则(Cramer’s Rule),可求出唯一h、k,再以 xh=Xx-h=Xyk=Yy-k=Y得出通解。
  2. aba1b1=0\left|\begin{array}{cccc}a&b\\a_1&b_1\end{array}\right|= 0
    • b10b_1\ne 0aa1=bb1=λ\dfrac{a}{a_1}=\dfrac{b}{b_1}=\lambda

      dydx=λ(a1x+b1y)+Ca1x+b1y+C1u=a1x+b1ydudx=a1+b1λu+Cu+C1\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\lambda(a_1x+b_1y)+C}{a_1x+b_1y+C_1} \overset{u=a_1x+b_1y}{\Rightarrow} \dfrac{\mathrm du}{\mathrm dx}=a_1+b_1\dfrac{\lambda u+C}{u+C_1}
    • b1=0b_1=0

      1. a1=0a_1=0dydx=ax+by+CC1=a2x+b2y+C2\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{ax+by+C}{C_1}=a_2x+b_2y+C_2,令 u=a2x+b2y+C2u=a_2x+b_2y+C_2dudx=a2+b2u\dfrac{\mathrm du}{\mathrm dx}=a_2+b_2u
      2. b=0b=0dydx=ax+Ca1x+C1\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{ax+C}{a_1x+C_1}

#

  1. dydx=xy+1x+y3\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{x-y+1}{x+y-3}

    解: {hk+1=0h+k3=0{k=2h=1{x=X+1y=Y+2dYdX=XYX+Y\begin{cases}h-k+1=0\\h+k-3=0\end{cases}\Rightarrow \begin{cases}k=2\\h=1\end{cases}\Rightarrow \begin{cases}x=X+1\\y=Y+2\end{cases}\Rightarrow \dfrac{\mathrm dY}{\mathrm dX}=\dfrac{X-Y}{X+Y}

    u+xdudx=1u1+u1+u12uu2du=1xdx12ln12uu2=lnx+C\begin{align*} u+x\dfrac{\mathrm du}{\mathrm dx}&=\dfrac{1-u}{1+u}\\ \dfrac{1+u}{1-2u-u^2}\mathrm du&=\dfrac{1}{x}\mathrm dx\\ -\dfrac{1}{2}\ln|1-2u-u^2|=\ln|x|+C \end{align*}

    代回,得

    (y2)2+2(x1)(y2)(x1)2=C(y-2)^2+2(x-1)(y-2)-(x-1)^2=C
  2. dydx=1+(yx)2\dfrac{\mathrm dy}{\mathrm dx}=1+(y-x)^2

    解:令 u=yxu=y-x

    dudx=dydx1=1+u21=u21u2du=dx1u=x+C\begin{align*} \dfrac{\mathrm du}{\mathrm dx}=\dfrac{\mathrm dy}{\mathrm dx}-1&=1+u^2-1=u^2\\ \dfrac{1}{u^2}\mathrm du&=\mathrm dx\\ -\dfrac{1}{u}&=x+C \end{align*}

    解为 1yx=x+C-\dfrac{1}{y-x}=x+Cy=xy=x

  3. dydx=(x+1)2+(4y+1)2+8xy+1\dfrac{\mathrm dy}{\mathrm dx}=(x+1)^2+(4y+1)^2+8xy+1

    解:

    dydx=(x+4y)2+2(x+4y)+3=(x+4y+1)2+2\begin{align*} \dfrac{\mathrm dy}{\mathrm dx}&=(x+4y)^2+2(x+4y)+3\\ &=(x+4y+1)^2+2 \end{align*}

    u=x+4y+1u=x+4y+1

    dudx=1+4(u2+2)=4u2+914u2+9du=dx16arctan(23u)=x+C\begin{align*} \dfrac{\mathrm du}{\mathrm dx}&=1+4(u^2+2)=4u^2+9\\ \int\dfrac{1}{4u^2+9}\mathrm du&=\int \mathrm dx\\ \dfrac{1}{6}\arctan(\dfrac{2}{3}u)&=x+C \end{align*}

    代回得 arctan(23x+83y+23)=6x+C\arctan(\dfrac{2}{3}x+\dfrac{8}{3}y+\dfrac{2}{3})=6x+C

6.3 齐次方程
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00