469 字
2 分钟
5.4 定积分的应用

§\S5.4 定积分的应用#

一、定积分的微元法#

定义:

abf(x)dx=limx0i=1nf(ξi)Δxi\int_a^bf(x)\mathrm dx=\lim_{x\to 0}\sum_{i=1}^nf(\xi_i)\Delta x_i

  1. 分割
  2. 代替
  3. 求和
  4. 取极限
A=abf(x)dxA(x)=axf(t)dtdA(x)=f(x)dxdA=f(x)dx\begin{align*} A&=\int_a^bf(x)\mathrm dx\\ A(x)&=\int_a^xf(t)\mathrm dt\\ \mathrm dA(x)&=f(x)\mathrm dx\\ \mathrm dA&=f(x)\mathrm dx \end{align*}ΔAif(ξi)Δxi\underset{曲}{\Delta A_i}\approx \underset{直}{f(\xi_i)\Delta x_i}

二、几何应用#

1. 面积#

  1. 直角坐标下
A=abf(x)dxA=\int_a^bf(x)\mathrm dx

A=abf(x)dxA=\int_a^b|f(x)|\mathrm dx

A=abf(x)g(x)dxA=\int_a^b|f(x)-g(x)|\mathrm dx

A=cdg(y)dyA=\int_c^dg(y)\mathrm dy

例:求 y2=2xy^2=2xy=x4y=x-4 所围面积

解:

{y2=2xy=x4{x=2y=2{x=8y=4\begin{cases} y^2=2x\\ y=x-4 \end{cases} \Rightarrow \begin{cases} x=2\\ y=-2 \end{cases} 或 \begin{cases} x=8\\ y=4 \end{cases}

法1:

A=08[f(x)g(x)]dx=02[2x(2x)]dx+28[2x(x4)]dx=432x3202+(4x+232x3212x2)28=18\begin{align*} A&=\int_0^8[f(x)-g(x)]\mathrm dx\\ &=\int_0^2[\sqrt{2x}-(-\sqrt{2x})]\mathrm dx+\int_2^8[\sqrt{2x}-(x-4)]\mathrm dx\\ &=\dfrac{4}{3}\sqrt{2}x^{\frac{3}{2}}|_0^2+(4x+\dfrac{2}{3}\sqrt{2}x^{\frac{3}{2}}-\dfrac{1}{2}x^2)|_2^8=18 \end{align*}

法2: g(x)={2xx(0,2)x4x(2,8)g(x)=\begin{cases}-\sqrt{2x} \quad x\in (0,2)\\x-4\quad x\in(2,8)\end{cases}

A=24[(y+4)y22]dy=(12y2+4y16y3)24=18\begin{align*} A&=\int_{-2}^4[(y+4)-\dfrac{y^2}{2}]\mathrm dy\\ &=(\dfrac{1}{2}y^2+4y-\dfrac{1}{6}y^3)|_{-2}^4\\ &=18 \end{align*}
  1. 极坐标下
ΔAi12ϕ2(ξi)ΔθidA=12ϕ2(θ)dθA=αβ12ϕ2(θ)dθ\begin{align*} \Delta A_i&\approx \dfrac{1}{2}\phi^2(\xi_i)\Delta \theta_i\\ \mathrm dA&=\dfrac{1}{2}\phi^2(\theta)\mathrm d\theta\\ A&=\int_\alpha^\beta \dfrac{1}{2}\phi^2(\theta)\mathrm d\theta \end{align*}

例:

  1. r2=a2cos2θr^2=a^2\cos 2\theta 所围面积
A=40π412ϕ2(θ)dθ=20π4a2cos2θdθ=2a2×12sin2θ0π4=a2\begin{align*} A&=4\int_0^{\frac{\pi}{4}}\dfrac{1}{2}\phi^2(\theta)\mathrm d\theta\\ &=2\int_0^{\frac{\pi}{4}}a^2\cos 2\theta \mathrm d\theta\\ &=2a^2\times \dfrac{1}{2}\sin 2\theta|_0^{\frac{\pi}{4}}\\ &=a^2 \end{align*}
  1. ρ=2cosθ\rho=2\cos \theta 所围面积
A=20π2124cos2θdθ=2(θ+12sin2θ)0π2=π\begin{align*} A&=2\int_0^{\frac{\pi}{2}}\dfrac{1}{2}4\cos^2\theta \mathrm d\theta\\ &=2\cdot (\theta+\dfrac{1}{2}\sin 2\theta)|_0^{\frac{\pi}{2}}\\ &=\pi \end{align*}
  1. 参数形式
{x=ϕ(t)y=ψ(t),αrβ\begin{align*} \begin{cases} x=\phi(t)\\ y=\psi(t) \end{cases} ,\alpha \le r \le \beta \end{align*}

则有

A=αβϕ(t)ψ(t)dt,x:ab,t:αβA=\int_\alpha^\beta|\phi(t)\psi'(t)|\mathrm dt, x:a\to b, t:\alpha \to \beta

例:x2a2+y2b2=1(a>0,b>0)\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a\gt 0,b\gt 0) 所围面积

解:原式参数方程表示如下

{x=acosty=bsint,t[0,2π]\begin{align*} \begin{cases} x=a\cos t\\ y=b\sin t \end{cases} , t \in [0,2\pi] \end{align*}

A=40ab1x2a2dx=4ba0aa2x2dx=4baπ20asint(asint)dt(x=acost)=4ab0π2sin2tdt=4ab12π2=πab\begin{align*} A&=4\int_0^ab\sqrt{1-\dfrac{x^2}{a^2}}\mathrm dx\\ &=4\dfrac{b}{a}\int_0^a\sqrt{a^2-x^2}\mathrm dx\\ &=4\dfrac{b}{a}\int_{\frac{\pi}{2}}^0-a\sin t(a\sin t)\mathrm dt\quad(x=a\cos t)\\ &=4ab\int_0^{\frac{\pi}{2}}\sin^2t \mathrm dt\\ &=4ab\cdot \dfrac{1}{2}\cdot \dfrac{\pi}{2}\\ &=\pi ab \end{align*}

A=40π2bsintasintdt=4ab0π2sintdt=πabA=4\int_0^{\frac{\pi}{2}}|b\sin t\cdot a\sin t|\mathrm dt=4ab\int_0^{\frac{\pi}{2}}\sin^t \mathrm dt=\pi ab

2. 体积#

ΔVif(ξi)ΔxiV=abA(x)dx=πab[f(x)]2dx\Delta V_i\approx f(\xi_i)\Delta x_i \Rightarrow V=\int_a^bA(x)\mathrm dx=\pi \int_a^b[f(x)]^2 \mathrm dx

例题#

  1. x2a2+y2b2=1\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 绕x轴,y轴旋转一周所围成的体积
  • V1=πaab2a2(a2x2)dx=43πab2V_1=\pi \int_{-a}^a\dfrac{b^2}{a^2}(a^2-x^2)\mathrm dx=\dfrac{4}{3}\pi ab^2
  • V2=πbba2(1y2b2)dy=43πa2bV_2=\pi \int_{-b}^ba^2(1-\dfrac{y^2}{b^2})\mathrm dy=\dfrac{4}{3}\pi a^2b
  1. x2a2+y2b2+z2c2=1\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1 (椭球面)所围成的体积
x=x0y2b2+z2c2=1x02a2S=πb2(1x02a2)c2(1x02a2)=πbc(1x02a2)V=aaSdx=43πabc\begin{align*} x&=x_0\\ \dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}&=1-\dfrac{x_0^2}{a^2}\\ S&=\pi \sqrt{b^2(1-\dfrac{x_0^2}{a^2})}\sqrt{c^2(1-\dfrac{x_0^2}{a^2})}=\pi bc(1-\dfrac{x_0^2}{a^2})\\ V&=\int_{-a}^aS \mathrm dx=\dfrac{4}{3}\pi abc \end{align*}
  1. x2+y2=a2,x2+z2=a2x^2+y^2=a^2, x^2+z^2=a^2 所围立体体积

解:V=80a(a2x2)dx=163a3V=8\int_0^a(a^2-x^2)\mathrm dx=\dfrac{16}{3}a^3

3. 弧长#

y=kxl=(ba)2+k2(ba)2ΔSi(Δx)2+(Δy)2dS=1+f2(x)dxS=abdS={ab1+f2(x)dxcd1+g2(y)dy\begin{align*} y&=kx\\ l&=\sqrt{(b-a)^2+k^2(b-a)^2}\\ \Delta S_i&\approx \sqrt{(\Delta x)^2+(\Delta y)^2}\\ \mathrm dS&=\sqrt{1+f'^2(x)}\mathrm dx\\ S&=\int_a^b \mathrm dS=\begin{cases} \int_a^b\sqrt{1+f'^2(x)}\mathrm dx\\ \int_c^d\sqrt{1+g'^2(y)}\mathrm dy \end{cases} \end{align*}

参数方程

{x=ϕ(t)y=ψ(t),αtβ,S=αβϕ2(t)+ψ2(t)dt\begin{align*} \begin{cases} x=\phi(t)\\ y=\psi(t) \end{cases} ,\alpha \le t \le \beta, S=\int_\alpha^\beta \sqrt{\phi'^2(t)+\psi'^2(t)}\mathrm dt \end{align*}

极坐标方程

r=ρ(θ),αθβ,S=αβρ2(θ)+ρ2(θ)dθ\begin{align*} r=\rho (\theta),\alpha\le \theta\le \beta,S=\int_\alpha^\beta\sqrt{\rho^2(\theta)+\rho'^2(\theta)} \mathrm d\theta \end{align*}

#

{x=a(tsint)y=a(1cost)(a>0)\begin{cases}x=a(t-\sin t)\\y=a(1-\cos t)\end{cases}(a\gt 0) 弧长 解:

S=02π[a(1cost)2]+(asint)2dt=02πa22a2cost+a2dt=2a02π1costdt=2a202πsint2dt=2a2[(cost2)02π]=8a\begin{align*} S&=\int_0^{2\pi}\sqrt{[a(1-\cos t)^2]+(a\sin t)^2}\mathrm dt\\ &=\int_0^{2\pi}\sqrt{a^2-2a^2\cos t+a^2}\mathrm dt\\ &=\sqrt{2}a\int_0^{2\pi}\sqrt{1-\cos t}\mathrm dt\\ &=\sqrt{2}a\cdot \sqrt{2}\int_0^{2\pi}\sin\dfrac{t}{2}\mathrm dt\\ &=2a\cdot 2[(-\cos \dfrac{t}{2})|_0^{2\pi}]=8a \end{align*}

4. 曲率#

定义:平面曲线上各点的弯曲程度为曲率

x=x(t),y=y(t),αtβx=x(t),y=y(t),\alpha \le t \le \beta

  • 平均曲率 k=ΔαΔS=ααPQ\overline{k}=\dfrac{\Delta \alpha}{\Delta S}=\dfrac{\alpha'-\alpha}{\stackrel\frown{PQ}}

  • 曲率 K=limΔt0ΔαΔS=dαdS\displaystyle K=|\lim_{\Delta t\to 0}\dfrac{\Delta \alpha}{\Delta S}|=|\dfrac{\mathrm d\alpha}{\mathrm dS}| α(t)=arctany(t)x(t),dSdt=x2(t)+y2(t)\because \alpha(t)=\arctan \dfrac{y'(t)}{x'(t)}, \dfrac{\mathrm dS}{\mathrm dt}=\sqrt{x'^2(t)+y'^2(t)} dαdS=α(t)S(t)=x(t)y(t)x(t)y(t)[x2(t)+y2(t)]32\therefore \dfrac{\mathrm d\alpha}{\mathrm dS}=\dfrac{\alpha'(t)}{S'(t)}=\dfrac{x'(t)y''(t)-x''(t)y'(t)}{[x'^2(t)+y'^2(t)]^{\frac{3}{2}}} k=xyxy(x2+y2)32k=\dfrac{|x'y''-x''y'|}{(x'^2+y'^2)^{\frac{3}{2}}}

  • 若曲线由 y=f(x)y=f(x) 给出,则有 k=y(1+y2)32k=\dfrac{|y''|}{(1+y'^2)^{\frac{3}{2}}}

  • 若曲线由 r=r(θ)r=r(\theta) 给出,则有 k=r2+2r2rr(r2+r2)32k=\dfrac{r^2+2r'^2-rr''}{(r^2+r'^2)^{\frac{3}{2}}}

5.4 定积分的应用
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00