737 字
4 分钟
5.2 基本定理、公式及其计算

§\S5.2 基本定理、公式及其计算#

可积函数未必有原函数,有原函数的函数未必可积。

一、微积分基本定理#

定义1(变限积分):设 f(x)f(x)[a,b][a,b] 连续,x[a,b]\forall x\in [a,b]f(x)f(x)[a,x][a,x] 上可积

ϕ(x)=axf(t)dtx[a,b]\phi (x)=\int_a^x f(t)\mathrm dt \quad x\in[a,b] 为变上限积分,ψ(x)=xbf(t)dtx[a,b]\psi (x)=\int_x^bf(t)\mathrm dt \quad x\in[a,b] 为变下限积分;统称为变限积分。

定理1:设 f(x)f(x)[a,b][a,b] 上连续,则 ϕ(x)=axf(t)dt\phi (x)=\int_a^xf(t)\mathrm dt[a,b][a,b] 上处处可导,且 ϕ(x)=ddxaxf(t)dt=f(x)x[a,b]\phi'(x)=\dfrac{\mathrm d}{\mathrm dx}\int_a^xf(t)\mathrm dt = f(x)\quad x\in [a,b]

定理2:若 F(x)F(x) 为连续函数 f(x)f(x)[a,b][a,b] 的一个原函数,有

abf(x)dx=F(b)F(a)=F(x)ab\int_a^bf(x)\mathrm dx=F(b)-F(a)=F(x)|_a^b

[牛顿-莱布尼兹公式]

例题#

  1. [ax2f(t)dt]=f(x2)2x[\int_a^{x^2}f(t)\mathrm dt]'=f(x^2)\cdot 2x

[ax2xf(t)dt]=[xax2f(t)dt]=ax2f(t)dt+xf(x2)2x=f(x2)2x+2x2f(x2)=2x(x+1)f(x2)[\int_a^{x^2}xf(t)\mathrm dt]'=[x \int_a^{x^2}f(t)\mathrm dt]'=\int_a^{x^2}f(t)\mathrm dt+x\cdot f(x^2)\cdot 2x=f(x^2)\cdot 2x+2x^2f(x^2)=2x(x+1)f(x^2)

ee21xlnxdx=lnlnxee2=ln21xlnxdx=1lnxdlnx=lnlnx+C\begin{align*} \int_e^{e^2}\dfrac{1}{x\ln x}&\mathrm dx=\ln |\ln x||_e^{e^2}=\ln 2 \\ \int \dfrac{1}{x\ln x}\mathrm dx&=\int \dfrac{1}{\ln x}\mathrm d\ln x=\ln |\ln x|+C \end{align*}
f(x)={3x21,1x0e2x,0x111f(x)dx=10f(x)dx+01f(x)dx=10(3x21)dx+01e2xdx=(x3x)10+12e2x01=12(e21)\begin{align*} f(x)&=\begin{cases}3x^2-1,-1\le x\le 0\\e^{2x},0\le x\le 1\end{cases}\\ \int_{-1}^1f(x)\mathrm dx&=\int_{-1}^0f(x)\mathrm dx+\int_0^1f(x)\mathrm dx\\ &=\int_{-1}^0(3x^2-1)\mathrm dx+\int_0^1e^{2x}\mathrm dx\\ &=(x^3-x)|_{-1}^0+\dfrac{1}{2}e^{2x}|_0^1\\ &=\dfrac{1}{2}(e^2-1) \end{align*}
22max{x,x2}dx=20x2dx+01xdx+12x2dx=13x320+12x201+13x312=83+12+73=112\begin{align*} \int_{-2}^2\max\{x,x^2\}\mathrm dx&=\int_{-2}^0x^2 \mathrm dx+\int_0^1x \mathrm dx+\int_1^2 x^2 \mathrm dx\\ &=\dfrac{1}{3}x^3|_{-2}^0+\dfrac{1}{2}x^2|_0^1+\dfrac{1}{3}x^3|_1^2\\ &=\dfrac{8}{3}+\dfrac{1}{2}+\dfrac{7}{3}\\ &=\dfrac{11}{2} \end{align*}

0yetdt+0xcostdt=0\int_0^ye^t \mathrm dt+\int_0^x\cos t \mathrm dt=0,求 dydx\dfrac{\mathrm dy}{\mathrm dx}

法一:ey1+sinx=0e^y-1+\sin x=0

两边对x求导 eyy0+cosx=0y=cosxey=cosxsinx1e^y\cdot y'-0+\cos x=0 \Rightarrow y'=-\dfrac{\cos x}{e^y}=\dfrac{\cos x}{\sin x-1}

法二:两边对x求导

eyy+cosx=0y=cosxey=cosxsinx1e^y\cdot y'+\cos x=0 \Rightarrow y'=-\dfrac{\cos x}{e^y}=\dfrac{\cos x}{\sin x-1}

limx00x2sintdtx4=limx0sinx22x4x3=limx02sinx24x2=12\begin{align*} \lim_{x\to 0}\dfrac{\int_0^{x^2}\sin t \mathrm dt}{x^4}&=\lim_{x\to 0}\dfrac{sin x^2\cdot 2x}{4x^3}\\ &=\lim_{x\to 0}\dfrac{2\sin x^2}{4\cdot x^2}\\ &=\dfrac{1}{2} \end{align*}
  1. 证明 g(y)=0y[0xf(t)dt]dxh(y)=0yf(x)(yx)dxg(y)=h(y)g(y)=\int_0^y[\int_0^xf(t)\mathrm dt]\mathrm dx\quad h(y)=\int_0^yf(x)(y-x)\mathrm dx \Rightarrow g(y)=h(y)y[0,+]y\in[0,+\infty]f(x)f(x) 连续

证:g(y)=0yf(t)dt=dg(y)yg'(y)=\int_0^yf(t)\mathrm dt=\dfrac{\mathrm dg(y)}{y}

h(y)=[0yf(x)ydx0yxf(x)dx]=0yf(x)dx+yf(y)yf(y)=0yf(x)dx=g(y)\begin{align*} h'(y)&=[\int_0^yf(x)y \mathrm dx-\int_0^y xf(x)\mathrm dx]'\\ &=\int_0^yf(x)\mathrm dx+yf(y)-yf(y)\\ &=\int_0^yf(x)\mathrm dx=g'(y) \end{align*}

g(y)=h(y)+C\therefore g(y)=h(y)+C

y=0y=0 时,g(0)=0=h(0)g(0)=0=h(0)

C=0\therefore C=0,即 g(y)=h(y)g(y)=h(y)

  1. f(x)=x2x02f(x)dx+201dxf(x)=x^2-x\int_0^2f(x)\mathrm dx+2\int_0^1 \mathrm dx,求 f(x)f(x)

解:设 a=02f(x)dxa=\int_0^2f(x)\mathrm dxb=01f(x)dxb=\int_0^1f(x)\mathrm dx

f(x)=x2ax+2bf(x)=x^2-ax+2b

a=02(x2ax+2b)dx=832a+4ba=\int_0^2(x^2-ax+2b)\mathrm dx=\dfrac{8}{3}-2a+4b

b=01(x2ax+2b)dx=13a3+2bb=\int_0^1(x^2-ax+2b)\mathrm dx=\dfrac{1}{3}-\dfrac{a}{3}+2b

{3a4b=83a2b=13{a=43b=13\begin{align*} \begin{cases} 3a-4b&=\dfrac{8}{3}\\ \dfrac{a}{2}-b&=\dfrac{1}{3} \end{cases} \Rightarrow \begin{cases} a&=\dfrac{4}{3}\\ b&=\dfrac{1}{3} \end{cases} \end{align*}

f(x)=x243x+13\therefore f(x)=x^2-\dfrac{4}{3}x+\dfrac{1}{3}

limn1n(sin1n+sin2n++sinnn)=limn(i=1nsin1n)1n=limn(i=1n(sin1n1n))=limni=1nf(in)Δxi=01sinxdx=cosx01=1cos1\begin{align*} \lim_{n\to \infty}\dfrac{1}{n}(\sin\dfrac{1}{n}+\sin \dfrac{2}{n}+\cdots+\sin \dfrac{n}{n})&=\lim_{n\to \infty}(\sum_{i=1}^n\sin\dfrac{1}{n})\dfrac{1}{n}\\ &=\lim_{n\to \infty}(\sum_{i=1}^n(\sin \dfrac{1}{n}\cdot \dfrac{1}{n}))\\ &=\lim_{n\to \infty}\sum_{i=1}^nf(\dfrac{i}{n})\cdot \Delta x_i\\ &=\int_0^1\sin x \mathrm dx\\ &=-\cos x|_0^1\\ &=1-\cos 1 \end{align*}

an=1n(n+1)(n+2)(n+3)(n+n)na_n=\dfrac{1}{n}\sqrt[n]{(n+1)(n+2)(n+3)\cdots(n+n)},求 limnan\displaystyle \lim_{n\to \infty}a_n

解:

limnlnan=ln1n+1n[ln(n+1)+ln(n+2)++ln(n+n)]=1n[ln(n+1)+ln(n+2)++ln(n+n)nlnn]=1n[ln(1+1n)+ln(1+2n)++ln(1+n1n)]=01ln(1+x)dx=2ln21\begin{align*} \lim_{n\to \infty}\ln a_n&=\ln \dfrac{1}{n}+\dfrac{1}{n}[\ln(n+1)+\ln(n+2)+\cdots+\ln(n+n)]\\ &=\dfrac{1}{n}[\ln (n+1)+\ln(n+2)+\cdots+\ln(n+n)-n\ln n]\\ &=\dfrac{1}{n}[\ln(1+\dfrac{1}{n})+\ln(1+\dfrac{2}{n})+\cdots+\ln(1+\dfrac{n-1}{n})]\\ &=\int_0^1\ln(1+x)\mathrm dx\\ &=2\ln 2-1 \end{align*}

limnan=e2ln21=4e\displaystyle \therefore \lim_{n\to \infty}a_n=e^{2\ln 2-1}=\dfrac{4}{e}

二、定积分的换元法和分部积分#

  1. [换元法]
abf(x)dx=x=φ(t)αβf[φ(t)]φ(t)dt\begin{align*} \int_a^bf(x)\mathrm dx\overset{x=\varphi (t)}{=}\int_\alpha^\beta f[\varphi(t)]\varphi'(t)\mathrm dt \end{align*}

其中 x:abx:a\to bt:αβt:\alpha \to \betaφ(α)=a\varphi (\alpha)=aφ(β)=b\varphi (\beta)=b

  1. [偶倍奇零] f(x)f(x)[a,a][-a,a] 上连续:
f(x)=f(x)aaf(x)dx=20af(x)dxf(x)=f(x)aaf(x)dx=0\begin{align*} f(-x)=f(x) &\Rightarrow \int_{-a}^af(x)\mathrm dx=2\int_0^af(x)\mathrm dx\\ f(-x)=-f(x)&\Rightarrow \int_{-a}^af(x)\mathrm dx=0 \end{align*}
  1. f(x)=f(x+T)aa+Tf(x)dx=0Tf(x)dxf(x)=f(x+T)\Rightarrow \int_a^{a+T}f(x)\mathrm dx=\int_0^Tf(x)\mathrm dx

证明:

aa+Tf(x)dx=a0f(x)dx+0Tf(x)dx+Ta+Tf(x)dx=0af(t+T)dt(t=xT)=0af(t)dt\begin{align*} \int_a^{a+T}f(x)\mathrm dx&=\int_a^0f(x)\mathrm dx+\int_0^Tf(x)\mathrm dx+\int_T^{a+T}f(x)\mathrm dx\\ &=\int_0^af(t+T)\mathrm dt\quad(t=x-T)\\ &=\int_0^af(t)\mathrm dt \end{align*}

推论 f(x)=f(x+T)aa+nTf(x)dx=n0Tf(x)dxf(x)=f(x+T)\Rightarrow \int_a^{a+nT}f(x)\mathrm dx=n\int_0^Tf(x)\mathrm dx

  1. [分部积分法]
abudv=(uv)ababvdu\begin{align*} \int_a^bu \mathrm dv = (uv)|_a^b-\int_a^b v \mathrm du \end{align*}

例题#

  1. 014x2dx\displaystyle \int_0^1 \sqrt{4-x^2}\mathrm dx

法一:

4x2dx=x=2cost22cos2tdt=2(1+cos2t)dt=2t+sin2t+C=2arcsinx2+x4x22+C=F(x)\begin{align*} \int \sqrt{4-x^2}\mathrm dx&\overset{x=2\cos t}{=}\int 2^2 \cos ^2t \mathrm dt\\ &=2\int (1+\cos2t)\mathrm dt\\ &=2t+\sin 2t+C\\ &=2\arcsin \dfrac{x}{2}+x\dfrac{\sqrt{4-x^2}}{2}+C=F(x) \end{align*}

原式 =F(x)01=π3+32=F(x)|_0^1=\dfrac{\pi}{3}+\dfrac{\sqrt{3}}{2}

法二:

原式=x=2sint0π622cos2tdt=(2t+sin2t)0π6=π3+32[x:01,sint:012,t:0π6]\begin{align*} 原式&\overset{x=2\sin t}{=}\int_0^{\frac{\pi}{6}}2^2\cos^2t\mathrm dt\\ &=(2t+\sin 2t)|_0^{\frac{\pi}{6}}\\ &=\dfrac{\pi}{3}+\dfrac{\sqrt{3}}{2} \end{align*} [x:0\to 1, \sin t :0\to \dfrac{1}{2},t:0\to \dfrac{\pi}{6}]

法三:

S=12×1×3+30360×22×π=π3+32\begin{align*} S&=\dfrac{1}{2}\times 1\times \sqrt{3}+\dfrac{30}{360}\times 2^2 \times \pi \\ &=\dfrac{\pi}{3}+\dfrac{\sqrt{3}}{2} \end{align*}
  1. 0π2cosx1+sin2xdx\displaystyle \int_0^{\frac{\pi}{2}}\dfrac{\cos x}{1+\sin ^2x}\mathrm dx

法一:

cosx1+sin2xdx=11+sin2xdsinx=arctan(sinx)+C\begin{align*} \int \dfrac{\cos x}{1+\sin ^2x}\mathrm dx&=\int \dfrac{1}{1+\sin^2x}\mathrm d\sin x\\ &=\arctan(\sin x)+C \end{align*}

原式 =arctan(sinx)0π2=π4=\arctan(\sin x)|_0^{\frac{\pi}{2}}=\dfrac{\pi}{4}


法二:

原式=u=sinx0111+u2du=arctanu01=π4\begin{align*} 原式 &\overset{u=\sin x}=\int_0^1\dfrac{1}{1+u^2}\mathrm du\\ &=\arctan u|_0^1\\ &=\dfrac{\pi}{4} \end{align*}
  1. ddx0xsin100(xt)dt\displaystyle \dfrac{\mathrm d}{\mathrm dx}\int_0^x\sin^{100}(x-t)\mathrm dt

解:

0xsin100(xt)dt=u=xtx0sin100u(1)du\int_0^x \sin^{100}(x-t)\mathrm dt\overset{u=x-t}{=}\int_x^0\sin^{100}u(-1)\mathrm du

原式 =ddx=0xsin100udu=sin100x=\dfrac{\mathrm d}{\mathrm dx}=\int_0^x \sin^{100}u \mathrm du=\sin^{100}x

0nπ1+sin2xdx=n0πsin2x+cos2x+2sinxcosxdx=n0πsinx+cosxdx=2n0πsin(x+π4)dx=2n(034πsin(x+π4)dx34ππsin(x+π4)dx)=22n\begin{align*} \int_0^{n\pi}\sqrt{1+\sin 2x}\mathrm dx&=n\int_0^\pi\sqrt{\sin^2x+\cos^2x+2\sin x\cos x}\mathrm dx\\ &=n\int_0^\pi |\sin x+\cos x|\mathrm dx\\ &=\sqrt{2}n\int_0^\pi|\sin(x+\dfrac{\pi}{4})|\mathrm dx\\ &=\sqrt{2}n(\int_0^{\frac{3}{4}\pi}\sin(x+\dfrac{\pi}{4})\mathrm dx-\int_{\frac{3}{4}\pi}^\pi\sin(x+\dfrac{\pi}{4})\mathrm dx)\\ &=2\sqrt{2}n \end{align*}
112x2+xcosx1+1x2dx=112x21+1x2dx+11xcosx1+1x2dx=401x21+1x2dx+0=401x2(11x2)xdx=401(11x2)dx=4011dx4011x2dx=4π\begin{align*} \int_{-1}^1\dfrac{2x^2+x\cos x}{1+\sqrt{1-x^2}}\mathrm dx&=\int_{-1}^1\dfrac{2x^2}{1+\sqrt{1-x^2}}\mathrm dx+\int_{-1}^1\dfrac{x\cos x}{1+\sqrt{1-x^2}}\mathrm dx\\ &=4\int_0^1\dfrac{x^2}{1+\sqrt{1-x^2}}\mathrm dx+0\\ &=4\int_0^1\dfrac{x^2(1-\sqrt{1-x^2})}{x}\mathrm dx\\ &=4\int_0^1(1-\sqrt{1-x^2})\mathrm dx\\ &=4\int_0^11 \mathrm dx-4\int_0^1\sqrt{1-x^2}\mathrm dx\\ &=4-\pi \end{align*}
  1. 0π4sec3xdx\displaystyle \int_0^{\frac{\pi}{4}}\sec ^3x \mathrm dx

法一:设原式 =I=I

I=0π4sec2xsecxdx=0π4secxudtanxv=secxtanx0π40π4tan2xsecxdx=20π4(sec2x1)secxdx=20π4sec3xdx+0π4secxdx=2I+[lnsecx+tanx]0π4=2I+ln(2+1)\begin{align*} I&=\int_0^{\frac{\pi}{4}}\sec^2x \sec x\mathrm dx\\ &=\int_0^{\frac{\pi}{4}}\underset{u}{\sec x}\mathrm d\underset{v}{\tan x}\\ &=\sec x\tan x|_0^{\frac{\pi}{4}}-\int_0^{\frac{\pi}{4}}\tan ^2x\sec x \mathrm dx\\ &=\sqrt{2}-\int_0^{\frac{\pi}{4}}(\sec ^2x-1)\sec x \mathrm dx\\ &=\sqrt{2}-\int_0^{\frac{\pi}{4}}\sec ^3x \mathrm dx+\int_0^{\frac{\pi}{4}}\sec x \mathrm dx\\ &=\sqrt{2}-I+[\ln |\sec x+\tan x|]|_0^{\frac{\pi}{4}}\\ &=\sqrt{2}-I+\ln(\sqrt{2}+1) \end{align*}

I=12[2+ln(2+1)]\therefore I=\dfrac{1}{2}[\sqrt{2}+\ln(\sqrt{2}+1)]


法二:

原式=0π41cos3xdx=0π41(1sin2x)2dsinx=t=sinx0221(1t2)2dt=022141tdt+02214(1t)2dt+022141+tdt+02214(1+t)2dt==12[2+ln(2+1)]\begin{align*} 原式&=\int_0^{\frac{\pi}{4}}\dfrac{1}{\cos ^3x}\mathrm dx\\ &=\int_0^{\frac{\pi}{4}}\dfrac{1}{(1-\sin ^2x)^2}\mathrm d\sin x\\ &\overset{t=\sin x}{=}\int_0^{\frac{\sqrt{2}}{2}}\dfrac{1}{(1-t^2)^2}\mathrm dt\\ &=\int_0^{\frac{\sqrt{2}}{2}}\dfrac{\frac{1}{4}}{1-t}\mathrm dt+\int_0^{\frac{\sqrt{2}}{2}}\dfrac{\frac{1}{4}}{(1-t)^2}\mathrm dt+\int_0^{\frac{\sqrt{2}}{2}}\dfrac{\frac{1}{4}}{1+t}\mathrm dt+\int_0^{\frac{\sqrt{2}}{2}}\dfrac{\frac{1}{4}}{(1+t)^2} \mathrm dt\\ &=\cdots\\ &=\dfrac{1}{2}[\sqrt{2}+\ln(\sqrt{2}+1)] \end{align*}
  1. f(x)f''(x)[0,1][0,1] 连续,f(0)=1,f(2)=3,f(2)=5f(0)=1,f(2)=3,f'(2)=5,求 01xf(2x)dx\displaystyle \int_0^1xf''(2x)\mathrm dx

解:

原式=1201xdf(2x)=12[xf(2x)0101f(2x)dx]=12[1×f(2)01201df(2x)]=12[f(2)12[f(2)f(0)]]=2\begin{align*} 原式&=\dfrac{1}{2}\int_0^1x \mathrm df'(2x)\\ &=\dfrac{1}{2}[xf'(2x)|_0^1-\int_0^1f'(2x)\mathrm dx]\\ &=\dfrac{1}{2}[1\times f'(2)-0-\dfrac{1}{2}\int_0^1 \mathrm df(2x)]\\ &=\dfrac{1}{2}[f'(2)-\dfrac{1}{2}[f(2)-f(0)]]=2 \end{align*}
  1. In=0π2sinnxdxI_n=\int_0^{\frac{\pi}{2}}\sin^nx \mathrm dxJn=0π2cosnxdxJ_n=\int_0^{\frac{\pi}{2}}\cos^nx \mathrm dx

解:Jn=x=π2tπ20cosn(π2t)dt=0π2sinntdt=InJ_n\overset{x=\frac{\pi}{2}-t}{=}\int_{\frac{\pi}{2}}^0-\cos^n(\dfrac{\pi}{2}-t)\mathrm dt=\int_0^{\frac{\pi}{2}}\sin ^nt \mathrm dt=I_n

I0=0π21dx=π2I_0=\int_0^{\frac{\pi}{2}}1 \mathrm dx=\dfrac{\pi}{2}

I1=0π2sinxdx=cosx0π2=1I_1=\int_0^{\frac{\pi}{2}}\sin x \mathrm dx=-\cos x|_0^{\frac{\pi}{2}}=1

In=0π2sinn1xdcosx=sinn1xcosx0π2+(n1)0π2xcos2xsinn2xdx=(n1)0π2(1sin2x)sin(n2)xdx=(n1)0π2sin(n2)xdx(n1)0π2sinnxdx=(n1)In2In\begin{align*} I_n&=-\int_0^{\frac{\pi}{2}}\sin^{n-1}x \mathrm d\cos x\\ &=-\sin ^{n-1}x \cos x|_0^{\frac{\pi}{2}}+(n-1)\int_0^{\frac{\pi}{2}}x\cos^2x \sin^{n-2}x \mathrm dx\\ &=(n-1)\int_0^{\frac{\pi}{2}}(1-\sin^2x)\sin^{(n-2)}x \mathrm dx\\ &=(n-1)\int_0^{\frac{\pi}{2}}\sin^{(n-2)}x \mathrm dx-(n-1)\int_0^{\frac{\pi}{2}}\sin ^nx \mathrm dx\\ &=(n-1)I_{n-2}-I_n \end{align*}

In=n1nIn2I_n=\dfrac{n-1}{n}I_{n-2}

I2m=(2m1)!!(2m)!!π2I_{2m}=\dfrac{(2m-1)!!}{(2m)!!}\cdot \dfrac{\pi}{2}

I2m+1=(2m)!!(2m+1)!!I_{2m+1}=\dfrac{(2m)!!}{(2m+1)!!}

5.2 基本定理、公式及其计算
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00