564 字
3 分钟
4.3 有理函数及其相关的不定积分

§4.3\S 4.3 有理函数及其相关的不定积分#

一、有理函数#

定义:

R(x)=P(x)Q(x)=a0+a1x++amxmb0+b1x++bnxnR(x)=\dfrac{P(x)}{Q(x)}=\dfrac{a_0+a_1x+\cdots+a_mx^m}{b_0+b_1x+\cdots+b_nx^n}

为一个有理函数 (ai,biR)(a_i,b_i\in R),其中 mnm\ge n假分式m<nm\lt n真分式,任意 R(x)R(x) 均可以表示为一个真分式加一个多项式的形式。

(xa)kA1xa+A2(xa)2++Ak(xa)k(x2+px+q)kB1x+C1x2+px+q++Bkx+Ckx2+px+q(x-a)^k\sim \dfrac{A_1}{x-a}+\dfrac{A_2}{(x-a)^2}+\cdots+\dfrac{A_k}{(x-a)^k}\\ (x^2+px+q)^k\sim \dfrac{B_1x+C_1}{x^2+px+q}+\cdots+\dfrac{B_kx+C_k}{x^2+px+q}

例题#

1x(x1)2=A1x+A2x1+A3(x1)2=A1(x1)2+A2x(x1)+A3xx(x1)2\begin{align*} \dfrac{1}{x(x-1)^2}&=\dfrac{A_1}{x}+\dfrac{A_2}{x-1}+\dfrac{A_3}{(x-1)^2}\\ &=\dfrac{A_1(x-1)^2+A_2x(x-1)+A_3x}{x(x-1)^2} \end{align*}{A1+A2=02A1+(A2)+A3=0A1=1{A1=1A2=1A3=1\begin{align*} \begin{cases} A_1+A_2=0\\ -2A_1+(-A_2)+A_3=0\\ A_1=1 \end{cases} \Rightarrow \begin{cases} A_1=1\\ A_2=-1\\ A_3=1 \end{cases} \end{align*}

\therefore 原式 =1x+1x1+1(x1)2=\dfrac{1}{x}+\dfrac{-1}{x-1}+\dfrac{1}{(x-1)^2}

1x(x1)2dx=1xdx+1x1dx+1(x1)2dx=lnxlnx11x1+C\begin{align*} \int \dfrac{1}{x(x-1)^2}\mathrm dx&=\int \dfrac{1}{x}\mathrm dx+\int \dfrac{-1}{x-1}\mathrm dx+\int \dfrac{1}{(x-1)^2}\mathrm dx\\ &=\ln |x|-\ln |x-1|-\dfrac{1}{x-1}+C \end{align*}
2x+2x52x4+2x32x2+x1=2(x+1)(x2+1)2(x1)=A1x1+B1x+C1x2+1+B2x+C2(x2+1)2\begin{align*} \dfrac{2x+2}{x^5-2x^4+2x^3-2x^2+x-1}&=\dfrac{2(x+1)}{(x^2+1)^2(x-1)}\\ &=\dfrac{A_1}{x-1}+\dfrac{B_1x+C_1}{x^2+1}+\dfrac{B_2x+C_2}{(x^2+1)^2} \end{align*}{A1+B1=0C1B1=02A1+B2+B1C1=0C2+C1B2B1=2A1C2C1=2{A1=1B1=1C1=1B2=2C2=0\begin{align*} \begin{cases} A_1+B_1=0\\ C_1-B_1=0\\ 2A_1+B_2+B_1-C_1=0\\ C_2+C_1-B_2-B_1=2\\ A_1-C_2-C_1=2 \end{cases} \Rightarrow \begin{cases} A_1=1\\ B_1=-1\\ C_1=-1\\ B_2=-2\\ C_2=0 \end{cases} \end{align*}

两大类真分式#

1(xa)kdx={lnxa+Ck=11k+1(xa)k+1+Ck1\begin{align*} \int \dfrac{1}{(x-a)^k}\mathrm dx= \begin{cases} \ln|x-a|+C &k=1\\ \dfrac{1}{-k+1}(x-a)^{-k+1}+C &k\ne 1 \end{cases} \end{align*}
(p24q<0)Bx+C(x2+px+q)kdx=B(x+p2)+CBp2[(x+p2)2+qp24]kd(x+p2)=Bu+D(u2+M2)kdu=12B(u2+M2)kd(u2+M2)+D(u2+M2)kdu={B2ln(u2+qp24)+Ck=1B2(m+1)(u2+qp24)m+1+Ck1(p^2-4q\lt 0)\\ \begin{align*} \int \dfrac{Bx+C}{(x^2+px+q)^k}\mathrm dx&=\int \dfrac{B(x+\frac{p}{2})+C-\frac{Bp}{2}}{\left[(x+\frac{p}{2})^2+q-\frac{p^2}{4}\right]^k}\mathrm d(x+\dfrac{p}{2})\\ &=\int \dfrac{Bu+D}{(u^2+M^2)^k}\mathrm du\\ &=\dfrac{1}{2}\int \dfrac{B}{(u^2+M^2)^k}\mathrm d(u^2+M^2)+\int \dfrac{D}{(u^2+M^2)^k}\mathrm du\\ &=\begin{cases} \dfrac{B}{2}\ln(u^2+q-\dfrac{p^2}{4})+C &k=1\\ \dfrac{B}{2(-m+1)}(u^2+q-\dfrac{p^2}{4})^{-m+1}+C &k\ne 1 \end{cases} \end{align*}

例题II#

11+x3dx=1(1+x)(1x+x2)dx=1311+xdx+13x+2x2x+1dx=13lnx+113121x2x+1d(x2x+1)231x2x+1dx=13lnx+116lnx2x+1231(x12)2+34d(x12)=13lnx+116lnx2x+1+13arctan2x13+C\begin{align*} \int \dfrac{1}{1+x^3}\mathrm dx&=\int \dfrac{1}{(1+x)(1-x+x^2)}\mathrm dx\\ &=\dfrac{1}{3}\int \dfrac{1}{1+x}\mathrm dx+\dfrac{1}{3}\int \dfrac{-x+2}{x^2-x+1}\mathrm dx\\ &=\dfrac{1}{3}\ln |x+1|-\dfrac{1}{3}\cdot \frac{1}{2}\int \dfrac{1}{x^2-x+1}\mathrm d(x^2-x+1)-\dfrac{2}{3}\int \dfrac{1}{x^2-x+1}\mathrm dx\\ &=\dfrac{1}{3}\ln |x+1|-\dfrac{1}{6}\ln|x^2-x+1|-\dfrac{2}{3}\int \dfrac{1}{(x-\frac{1}{2})^2+\frac{3}{4}}\mathrm d(x-\dfrac{1}{2})\\ &=\dfrac{1}{3}\ln |x+1|-\dfrac{1}{6}\ln|x^2-x+1|+\dfrac{1}{\sqrt{3}}\arctan \dfrac{2x-1}{\sqrt{3}}+C \end{align*}
x3(x2)100dx=t=x2(t+2)3t100dt=(t97+12t99+6t98+8t100)dt=196t96+1298t98+697t97+899t99+C=196(x2)96649(x2)98697(x2)97899(x2)99+C\begin{align*} \int \dfrac{x^3}{(x-2)^{100}}\mathrm dx&\overset{t=x-2}{=}\int \dfrac{(t+2)^3}{t^{100}}\mathrm dt\\ &=\int (t^{-97}+12t^{-99}+6t^{-98}+8t^{-100})\mathrm dt\\ &=\dfrac{1}{-96}t^{-96}+\dfrac{12}{-98}t^{-98}+\dfrac{6}{-97}t^{-97}+\dfrac{8}{-99}t^{-99}+C\\ &=-\dfrac{1}{96(x-2)^{96}}-\dfrac{6}{49(x-2)^{98}}-\dfrac{6}{97(x-2)^{97}}-\dfrac{8}{99(x-2)^{99}}+C \end{align*}
  1. [分子凑成分母求导]
x2(x2+2x+2)2dx=[x2+2x+2(x2+2x+2)22x+2(x2+2x+2)2]dx=1(x+1)2+1d(x+1)1(x2+2x+2)2d(x2+2x+2)=arctan(1+x)+(x2+2x+2)1+C\begin{align*} \int \dfrac{x^2}{(x^2+2x+2)^2}\mathrm dx&=\int \left[\dfrac{x^2+2x+2}{(x^2+2x+2)^2}-\dfrac{2x+2}{(x^2+2x+2)^2}\right]\mathrm dx\\ &=\int\dfrac{1}{(x+1)^2+1}\mathrm d(x+1)-\int\dfrac{1}{(x^2+2x+2)^2}\mathrm d(x^2+2x+2)\\ &=\arctan(1+x)+(x^2+2x+2)^{-1}+C \end{align*}

二、三角有理函数的积分#

关于 u(x),v(x)u(x),v(x) 的有理函数,R(sinx,cosx)dx\int R(\sin x,\cos x)\mathrm dx 是三角函数有理式的不定积分

一般令 t=tanx2t=\tan\dfrac{x}{2},是因为 sinx=2t1+t2\sin x=\dfrac{2t}{1+t^2}cosx=1t21+t2\cos x=\dfrac{1-t^2}{1+t^2}dx=21+t2dt\mathrm dx=\dfrac{2}{1+t^2}\mathrm dt

例题#

13+cosxdx=cosx=1t21+t21+t24+2t221+t2dt=12+t2dt=22arctant2+C=22arctantanx22+C\begin{align*} \int \dfrac{1}{3+\cos x}\mathrm dx&\overset{\cos x=\frac{1-t^2}{1+t^2}}{=}\int \dfrac{1+t^2}{4+2t^2}\cdot \dfrac{2}{1+t^2}\mathrm dt\\ &=\int \dfrac{1}{2+t^2}\mathrm dt\\ &=\dfrac{\sqrt{2}}{2}\arctan\dfrac{t}{\sqrt{2}}+C\\ &=\dfrac{\sqrt{2}}{2}\arctan\dfrac{\tan \frac{x}{2}}{\sqrt{2}}+C \end{align*}
1acos2x+bsin2xdx(a>0,b>0)=1cos2xa+btan2xdx=1a+btan2xd(tanx)=t=tanx1a+bt2dt=1a(1+bat2)dt=ab1a11+(bat)2d(bat)=1abarcsinbat+C=1abarcsinbatanx+C\begin{align*} \int \dfrac{1}{a\cos ^2x+b\sin ^2x}\mathrm dx(a\gt 0,b\gt 0)&=\int \dfrac{\frac{1}{\cos^2x}}{a+b\tan^2x}\mathrm dx\\ &=\int \dfrac{1}{a+b\tan^2x}\mathrm d(\tan x)\\ &\overset{t=\tan x}{=}\int \dfrac{1}{a+bt^2}\mathrm dt\\ &=\int \dfrac{1}{a(1+\frac{b}{a}t^2)}\mathrm dt\\ &=\sqrt{\dfrac{a}{b}}\cdot \dfrac{1}{a}\int\dfrac{1}{1+(\sqrt{\dfrac{b}{a}t})^2}\mathrm d(\sqrt{\dfrac{b}{a}}t)\\ &=\sqrt{\dfrac{1}{ab}}\arcsin \sqrt{\dfrac{b}{a}}t+C\\ &=\sqrt{\dfrac{1}{ab}}\arcsin \sqrt{\dfrac{b}{a}}\tan x+C \end{align*}
1sinxcos2xdx=sinxsin2x(2cos2x1)dx=1(1cos2x)(2cos2x1)d(cosx)=t=cosx1(1t2)(2t21)dt=(11t2+22t21)dt=[12(11+t+11t)+(12t112t+1)]=12(ln1+t+ln1t)ln2t1ln2t+12+C\begin{align*} \int \dfrac{1}{\sin x\cos 2x}\mathrm dx&=\int \dfrac{\sin x}{\sin^2x(2\cos^2x-1)}\mathrm dx\\ &=\int \dfrac{-1}{(1-\cos^2x)(2\cos^2x-1)}\mathrm d(\cos x)\\ &\overset{t=\cos x}{=}\int \dfrac{-1}{(1-t^2)(2t^2-1)}\mathrm dt\\ &=-\int \left(\dfrac{1}{1-t^2}+\dfrac{2}{2t^2-1}\right)\mathrm dt\\ &=-\int \left[\dfrac{1}{2}\left(\dfrac{1}{1+t}+\dfrac{1}{1-t}\right)+\left(\dfrac{1}{\sqrt{2}t-1}-\dfrac{1}{\sqrt{2}t+1}\right)\right]\\ &=-\dfrac{1}{2}(\ln|1+t|+\ln|1-t|)-\dfrac{\ln|\sqrt{2}t-1|-\ln|\sqrt{2}t+1|}{\sqrt{2}}+C \end{align*}

三、无理根式的不定积分#

  1. 形如 R(x,ax+bcx+d)dx\displaystyle \int R(x,\sqrt{\dfrac{ax+b}{cx+d}}) \mathrm dx
    • t=ax+bcx+dt=\sqrt{\dfrac{ax+b}{cx+d}}
  2. 形如 R(x,ax+bcx+dn,ax+bcx+dm)\displaystyle \int R(x,\sqrt[n]{\dfrac{ax+b}{cx+d}},\sqrt[m]{\dfrac{ax+b}{cx+d}})
    • t=ax+bcx+dkt=\sqrt[k]{\dfrac{ax+b}{cx+d}},其中 kkm,nm,n 的最小公倍数
  3. 形如 R(x,ax2+bx+c)\displaystyle \int R(x,\sqrt{ax^2+bx+c})
    • 三角换元、有理函数或配方
    • 欧拉变换,令 ax±t=ax2+bx+c(a>0)\sqrt{a}x\pm t=\sqrt{ax^2+bx+c} (a\gt 0) [欧拉第一代换],或 xt±c=ax2+bx+c(c>0)xt\pm \sqrt{c}=\sqrt{ax^2+bx+c} (c\gt 0) [欧拉第二代换],或 t(xa)=ax2+bx+ct(x-a)=\sqrt{ax^2+bx+c} [欧拉第三代换,其中 α,β\alpha,\beta 是二次三项式的两个不同实根]

例题#

1(x1)(x+1)23dx=x+1x131x+1dx=3t31dt(t=x+1x13)=(1t1+t+2t2+t+1)dt=1t1d(t1)+12(2t+1)+32t2+t+1dt=lnt1+12lnt2+t+1+32dt(t+12)2=lnt1+12lnt2+t+1+3arctan2t+13+C=lnx+1x131+12ln(x+1x1)23+x+1x13+1+3arctan13(2x+1x13+1)+C\begin{align*} \int \dfrac{1}{\sqrt[3]{(x-1)(x+1)^2}}\mathrm dx&=\int \sqrt[3]{\dfrac{x+1}{x-1}}\dfrac{1}{x+1}\mathrm dx\\ &=\int \dfrac{-3}{t^3-1}\mathrm dt\quad (t=\sqrt[3]{\dfrac{x+1}{x-1}})\\ &=\int (\dfrac{-1}{t-1}+\dfrac{t+2}{t^2+t+1})\mathrm dt\\ &=-\int \dfrac{1}{t-1}\mathrm d(t-1)+\int\dfrac{\frac{1}{2}(2t+1)+\frac{3}{2}}{t^2+t+1}\mathrm dt\\ &=-\ln|t-1|+\dfrac{1}{2}\ln|t^2+t+1|+\dfrac{3}{2}\int \dfrac{\mathrm dt}{(t+\frac{1}{2})^2}\\ &=-\ln|t-1|+\dfrac{1}{2}\ln|t^2+t+1|+\sqrt{3}\arctan\dfrac{2t+1}{\sqrt{3}}+C\\ &=-\ln|\sqrt[3]{\dfrac{x+1}{x-1}}-1|+\dfrac{1}{2}\ln|\sqrt[3]{\left(\dfrac{x+1}{x-1}\right)^2}+\sqrt[3]{\dfrac{x+1}{x-1}}+1|+\sqrt{3}\arctan\dfrac{1}{\sqrt{3}}(2\sqrt[3]{\dfrac{x+1}{x-1}}+1)+C \end{align*}
  1. 1xx22x3dx\displaystyle \int \dfrac{1}{x\sqrt{x^2-2x-3}}\mathrm dx

法一:

原式=1x(x3)(x+1)dx=x+1x(x+1)x3dx=t=x+1x3t(t21)24t2(3t2+1)[8t(t21)2]dt=23t2+1dt=231(3t)2+1d(3t)=23arctan(3t)+C=23arctan3(x+1)x3+C\begin{align*} 原式&=\int \dfrac{1}{x\sqrt{(x-3)(x+1)}}\mathrm dx\\ &=\int \dfrac{\sqrt{x+1}}{x(x+1)\sqrt{x-3}}\mathrm dx\\ &\overset{t=\sqrt{\frac{x+1}{x-3}}}{=}\int \dfrac{t(t^2-1)^2}{4t^2(3t^2+1)}\left[\dfrac{-8t}{(t^2-1)^2}\right]\mathrm dt\\ &=-\int \dfrac{2}{3t^2+1}\mathrm dt\\ &=-\dfrac{2}{\sqrt{3}}\int \dfrac{1}{(\sqrt{3}t)^2+1}\mathrm d(\sqrt{3}t)\\ &=-\dfrac{2}{\sqrt{3}}\arctan(\sqrt{3}t)+C\\ &=-\dfrac{2}{\sqrt{3}}\arctan\sqrt{\dfrac{3(x+1)}{x-3}}+C \end{align*}

法二:

原式=1x(x1)24dx=x1=2sect1(2sect+1)2tant2secttantdt=2sect2sect+1dt=12+costdt=cost=1s21+s2,dt=s1+s2ds1+s23+s221+s2ds=23+s2ds=23arctans3+C=23arctanx22x33(x+1)+C\begin{align*} 原式&=\int \dfrac{1}{x\sqrt{(x-1)^2-4}}\mathrm dx\\ &\overset{x-1=2\sec t}{=}\int \dfrac{1}{(2\sec t+1)2\tan t}2\sec t\tan t \mathrm dt\\ &=\int \dfrac{2\sec t}{2\sec t+1}\mathrm dt\\ &=\int \dfrac{1}{2+\cos t}\mathrm dt\\ &\overset{\cos t=\frac{1-s^2}{1+s^2},\mathrm dt=\frac{s}{1+s^2}\mathrm ds}{=}\int \dfrac{1+s^2}{3+s^2}\cdot \dfrac{2}{1+s^2}\mathrm ds\\ &=\int \dfrac{2}{3+s^2}\mathrm ds\\ &=\dfrac{2}{\sqrt{3}}\arctan\dfrac{s}{\sqrt{3}}+C\\ &=\dfrac{2}{\sqrt{3}}\arctan\dfrac{\sqrt{x^2-2x-3}}{\sqrt{3}(x+1)}+C \end{align*}

法三[欧拉变换]:

x22x3=x+tx=3+t22(1+t),dx=(t+3)(t1)2(1+t)2dt原式=23+t2dt=2311+t23dt=2311+(t3)2d(t3)=23arctant3+C=23arctanx22x3x3+C\begin{align*} \sqrt{x^2-2x-3}=x+t&\Rightarrow x=-\dfrac{3+t^2}{2(1+t)},\mathrm dx=-\dfrac{(t+3)(t-1)}{2(1+t)^2}\mathrm dt\\ 原式&=\int \dfrac{2}{3+t^2}\mathrm dt\\ &=\dfrac{2}{3}\int \dfrac{1}{1+\frac{t^2}{3}}\mathrm dt\\ &=\dfrac{2}{\sqrt{3}}\int \dfrac{1}{1+(\frac{t}{\sqrt{3}})^2}\mathrm d(\dfrac{t}{\sqrt{3}})\\ &=\dfrac{2}{\sqrt{3}}\arctan\dfrac{t}{\sqrt{3}}+C\\ &=\dfrac{2}{\sqrt{3}}\arctan\dfrac{\sqrt{x^2-2x-3}-x}{\sqrt{3}}+C \end{align*}
4.3 有理函数及其相关的不定积分
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00