811 字
4 分钟
4.2 换元法与分部积分法

§4.2\S 4.2 换元法与分部积分法#

一、换元积分法#

y=f(u)u=φ(x)y=f(φ(x))y=f(u)\quad u=\varphi(x)\quad y=f(\varphi(x))

dy=f(φ(x))φ(x)dx=f(u)du\mathrm dy=f'(\varphi(x))\varphi'(x)\mathrm dx=f'(u)\mathrm du

1dy=f(φ(x))φ(x)dxf(u)du\displaystyle \int 1\mathrm dy=\int f'(\varphi(x))\varphi'(x)\mathrm dx\rightleftharpoons \int f'(u)\mathrm du

  • \Rightarrow:第一换元积分法
  • \Leftarrow:第二换元积分法

定理:

f(φ(x))φ(x)dx=f(φ(x))d(φ(x))=u=φ(x)f(u)du=F(u)+C=F(φ(x))+C\begin{align*} \int f(\varphi(x))\varphi'(x)\mathrm dx&=\int f(\varphi(x))\mathrm d(\varphi(x))\\ &\overset{u=\varphi(x)}{=}\int f(u)\mathrm du\\ &=F(u)+C\\ &=F(\varphi(x))+C \end{align*}

例题#

  1. cosxsinxdx\int \cos x\cdot \sin x\mathrm dx

解:u=sinxu=\sin x 换元得

原式=sinxdsinx=udu=u2+C=12sin2x+C\begin{align*} 原式&=\int \sin x\mathrm d\sin x\\ &=\int u\mathrm du\\ &=\dfrac{u^2}+C\\ &=\dfrac{1}{2}\sin^2x+C \end{align*}

u=cosxu=\cos x 换元得

原式=cosxdcosx=udu=u22+C=12cos2x+C\begin{align*} 原式&=-\int \cos x\mathrm d\cos x\\ &=-\int u\mathrm du\\ &=-\dfrac{u^2}{2}+C\\ &=-\dfrac{1}{2}\cos^2x+C \end{align*}
  1. tanxdx\int \tan x\mathrm dx

解:

  • 法一,原式
=sinxcosxdx=(cosx)cosxdx=u=cosx1udu=lnu+C=lncosx+C\begin{align*} &=\int \dfrac{\sin x}{\cos x}\mathrm dx\\ &=-\int\dfrac{(\cos x)'}{\cos x}\mathrm dx\\ &\overset{u=\cos x}{=}-\int\dfrac{1}{u}\mathrm du\\ &=-\ln|u|+C\\ &=-\ln|\cos x|+C \end{align*}
  • 法二,原式
=t=tanxt11+t2dt=t1+t2dt=1211+t2d(t2+1)=12ln1+t2+C=12lnsec2x+C=lnsecx+C\begin{align*} &\overset{t=\tan x}{=}\int t\cdot \dfrac{1}{1+t^2}\mathrm dt\\ &=\int\dfrac{t}{1+t^2}\mathrm dt\\ &=\dfrac{1}{2}\int\dfrac{1}{1+t^2}\mathrm d(t^2+1)\\ &=\dfrac{1}{2}\ln|1+t^2|+C\\ &=\dfrac{1}{2}\ln\sec^2x+C\\ &=\ln|\sec x|+C \end{align*}
  1. secxdx\int \sec x\mathrm dx

解:

  • 法一(换元法)
原式=1cosxdx=cosxcos2xdx=11sin2xdsinx=t=sinx11t2dt=12(11t+11+t)dt=1211td(1t)+1211+td(1+t)=12ln1+t1t+C=12ln1+sinx1sinx+C\begin{align*} 原式&=\int \dfrac{1}{\cos x}\mathrm dx\\ &=\int \dfrac{\cos x}{\cos^2x}\mathrm dx\\ &=\int \dfrac{1}{1-\sin^2x}\mathrm d\sin x\\ &\overset{t=\sin x}{=}\int \dfrac{1}{1-t^2}\mathrm dt\\ &=\int \dfrac{1}{2}(\dfrac{1}{1-t}+\dfrac{1}{1+t})\mathrm dt\\ &=-\dfrac{1}{2}\int \dfrac{1}{1-t}\mathrm d(1-t)+\dfrac{1}{2}\int \dfrac{1}{1+t}d(1+t)\\ &=\dfrac{1}{2}\ln |\dfrac{1+t}{1-t}|+C=\dfrac{1}{2}\ln|\dfrac{1+\sin x}{1-\sin x}|+C \end{align*}
  • 法二
原式=secx(secx+tanx)secx+tanxdx=1secx+tanxd(secx+tanx)=lnsecx+tanx+C\begin{align*} 原式&=\int \dfrac{\sec x(\sec x+\tan x)}{\sec x+\tan x}\mathrm dx\\ &=\int \dfrac{1}{\sec x+\tan x}\mathrm d(\sec x+\tan x)\\ &=\ln|\sec x+\tan x|+C \end{align*}
  1. [降阶处理]
cos2xdx=1+cos2x2dx=14sin2x+12x+C\begin{align*} \int \cos^2x\mathrm dx&=\int \dfrac{1+\cos 2x}{2}\mathrm dx\\ &=\dfrac{1}{4}\sin 2x+\dfrac{1}{2}x+C \end{align*}cos3xdx=(1sin2x)dsinx=sinx13sin3x+C\begin{align*} \int \cos^3x\mathrm dx&=\int (1-\sin^2x)\mathrm d\sin x\\ &=\sin x-\dfrac{1}{3}\sin^3x+C \end{align*}cos4xdx=(cos2x)2dx=(cos2x+12)2dx=132sin4x+14sin2x+3x8+C\begin{align*} \int \cos^4x\mathrm dx&=\int(\cos^2x)^2\mathrm dx\\ &=\int (\dfrac{\cos 2x+1}{2})^2\mathrm dx\\ &=\dfrac{1}{32}\sin 4x+\dfrac{1}{4}\sin 2x+\dfrac{3x}{8}+C \end{align*}

cos2kxdx=(cos2x)kdx=(cos2x+12)kdx\displaystyle \int \cos^{2k}x\mathrm dx=\int (\cos^2x)^k\mathrm dx=\int (\dfrac{\cos 2x+1}{2})^k\mathrm dx

cos2k+1dx=(cos2x)kcosxdx=(1sin2x)kdsinx=(1u2)kdu\displaystyle \int \cos^{2k+1}\mathrm dx=\int (\cos^2x)^k\cos x\mathrm dx=\int (1-\sin^2x)^k\mathrm d\sin x=\int (1-u^2)^k\mathrm du

(ax+b)mdx=1a(ax+b)md(ax+b)=1aumdu={1a(um+1m+1+C)=1a[(ax+b)m+1m+1]+Cm11a[lnu+C]=1alnax+b+Cm=1\begin{align*} \int (ax+b)^m\mathrm dx&=\dfrac{1}{a}\int(ax+b)^m\mathrm d(ax+b)\\ &=\dfrac{1}{a}\int u^m\mathrm du\\ &=\begin{cases} \dfrac{1}{a}(\dfrac{u^{m+1}}{m+1}+C)=\dfrac{1}{a}\left[\dfrac{(ax+b)^{m+1}}{m+1}\right]+C\quad m\ne -1\\ \dfrac{1}{a}\left[\ln|u|+C\right]=\dfrac{1}{a}\ln|ax+b|+C\quad m=-1 \end{cases} \end{align*}
  1. 1a2+x2dx\int \dfrac{1}{a^2+x^2}\mathrm dx

法一:原式=aa2[1+(xa)2]=1aarctanxa+C\displaystyle \int \dfrac{a}{a^2[1+(\frac{x}{a})^2]}=\dfrac{1}{a}\arctan\dfrac{x}{a}+C

法二:换元 x=atx=at

原式 =1a2+a2t2adt=1a11+t2dt=1aarctanxa+C\displaystyle =\dfrac{1}{a^2+a^2t^2}a\mathrm dt=\dfrac{1}{a}\int \dfrac{1}{1+t^2}\mathrm dt=\dfrac{1}{a}\arctan\dfrac{x}{a}+C

法三:换元 x=atantx=a\tan t

原式 =1a2+a2tan2tasec2tdt=1a1dt=1at+C=1aarctanxa+C\displaystyle =\int \dfrac{1}{a^2+a^2\tan^2t}a\sec^2t\mathrm dt=\dfrac{1}{a}\int 1\mathrm dt=\dfrac{1}{a}t+C=\dfrac{1}{a}\arctan \dfrac{x}{a}+C

  1. 1a2x2dx\int \dfrac{1}{a^2-x^2}\mathrm dxa>0a\gt 0

法一:换元 x=atx=at

原式=1a1t2adt=11t2dt=arcsint+C=arcsinxa+C\begin{align*} 原式&=\int \dfrac{1}{a\sqrt{1-t^2}}a\mathrm dt\\ &=\int \dfrac{1}{1-t^2}\mathrm dt\\ &=\arcsin t+C\\ &=\arcsin \dfrac{x}{a}+C \end{align*}

法二:换元 x=asintx=a\sin t

原式=1acostadsint=1costcostdt=1dt=t+C=arcsinxa+C\begin{align*} 原式&=\int \dfrac{1}{a\cos t}a\mathrm d\sin t\\ &=\int \dfrac{1}{\cos t}\cdot \cos t\mathrm dt\\ &=\int 1\mathrm dt\\ &=t+C\\ &=\arcsin\dfrac{x}{a}+C \end{align*}
1x2a2dx=x=asect1atantasecttantdt=sectdt=lnsect+tant+C=lnxa+x2a2a+C=lnx+x2a2+C\begin{align*} \int \dfrac{1}{x^2-a^2}\mathrm dx&\overset{x=a\sec t}{=}\int \dfrac{1}{a\tan t}a\sec t\tan t\mathrm dt\\ &=\int \sec t\mathrm dt\\ &=\ln|\sec t+\tan t|+C\\ &=\ln|\dfrac{x}{a}+\dfrac{\sqrt{x^2-a^2}}{a}|+C\\ &=\ln|x+\sqrt{x^2-a^2}|+C \end{align*}
1x2+a2dx=x=atant1asectadtant=1sectsec2tdt=sectdt=lnsect+tant+C=lnx+x2+a2+C\begin{align*} \int \dfrac{1}{x^2+a^2}\mathrm dx&\overset{x=a\tan t}=\int \dfrac{1}{a\sec t}a\mathrm d\tan t\\ &=\int \dfrac{1}{\sec t}\sec^2t\mathrm dt\\ &=\int \sec t\mathrm dt\\ &=\ln|\sec t+\tan t|+C\\ &=\ln|x+\sqrt{x^2+a^2}|+C \end{align*}
1(a2+x2)2dx=x=atant1a4sec4tasec2tdt=1a31sec2tdt=1a3cos2tdt=1a3cos2t+12dt=1a314sin2t+12a3t+C=14a3sin2arctanxa+arctanxa2a3+C\begin{align*} \int \dfrac{1}{(a^2+x^2)^2}\mathrm dx&\overset{x=a\tan t}{=}\int \dfrac{1}{a^4\sec^4t}a\sec^2t\mathrm dt\\ &=\dfrac{1}{a^3}\int \dfrac{1}{\sec^2t}\mathrm dt\\ &=\dfrac{1}{a^3}\int \cos^2t\mathrm dt\\ &=\dfrac{1}{a^3}\int \dfrac{\cos 2t+1}{2}\mathrm dt\\ &=\dfrac{1}{a^3}\cdot \dfrac{1}{4}\sin 2t+\dfrac{1}{2a^3}\cdot t+C\\ &=\dfrac{1}{4a^3}\sin 2\arctan\dfrac{x}{a}+\dfrac{\arctan \frac{x}{a}}{2a^3}+C \end{align*}
  1. 1xx21dx\int \dfrac{1}{x\sqrt{x^2-1}}\mathrm dx

法一:

原式=x=sect1secttantsecttantdt=dt=t+C=arccos1x+C\begin{align*} 原式&\overset{x=\sec t}{=}\int \dfrac{1}{\sec t\tan t}\sec t\tan t\mathrm dt\\ &=\int dt\\ &=t+C\\ &=\arccos \dfrac{1}{x}+C \end{align*}

法二:

原式=121x2x21d(x2)=u=x2121uu1du=s=u1121(s2+1)s2sds=arctans+C=arctanx21+C\begin{align*} 原式&=\dfrac{1}{2}\int \dfrac{1}{x^2\sqrt{x^2-1}}\mathrm d(x^2)\\ &\overset{u=x^2}{=}\dfrac{1}{2}\int \dfrac{1}{u\sqrt{u-1}}\mathrm du\\ &\overset{s=\sqrt{u-1}}{=}\dfrac{1}{2}\int \dfrac{1}{(s^2+1)s}2s\mathrm ds\\ &=\arctan s+C\\ &=\arctan\sqrt{x^2-1}+C \end{align*}

二、分部积分法#

(uv)=uv+uv(uv)dx=(uv)dx+(uv)dxuv=vdu+udv\begin{align*} (uv)'&=u'v+uv'\\ \rightarrow \int (uv)'\mathrm dx&=\int (u'v)\mathrm dx+\int (uv')\mathrm dx\\ \rightarrow uv&=\int v\mathrm du+\int u\mathrm dv \end{align*}

定理:udv=uvvdu\displaystyle \int u\mathrm dv=uv-\int v\mathrm du

例题#

cosxsinxdx=sinxudsinxv=sin2xsinxdsinx=sin2x(sin2x2+C)=12sin2x+C\begin{align*} \int \cos x\sin x\mathrm dx&=\int \underset{u}{\sin x}\mathrm d\underset{v}{\sin x}\\ &=\sin^2x-\int \sin x\mathrm d\sin x\\ &=\sin^2x-(\dfrac{\sin^2x}{2}+C)\\ &=\dfrac{1}{2}\sin^2x+C \end{align*}
arctanxudxv=xarctanxx1+x2dx=xarctanx+x1+x2d(x2+1)=xarctanx12ln(1+x2)+C\begin{align*} \int \underset{u}{\arctan x}\mathrm d\underset{v}{x}&=x\arctan x-\int \dfrac{x}{1+x^2}\mathrm dx\\ &=x\arctan x+\int \dfrac{-x}{1+x^2}\mathrm d(x^2+1)\\ &=x\arctan x-\dfrac{1}{2}\ln(1+x^2)+C \end{align*}arcsinxdx=xarcsinxx1x2dx=xarcsinx+x1x2dx=xarcsinx+1x2+C\begin{align*} \int \arcsin x\mathrm dx&=x\arcsin x-\int \dfrac{x}{\sqrt{1-x^2}}\mathrm dx\\ &=x\arcsin x+\int\dfrac{-x}{\sqrt{1-x^2}}\mathrm dx\\ &=x\arcsin x+\sqrt{1-x^2}+C \end{align*}
x2sinxdx=x2d(cosx)=(x2cosxcosx2xdx)=x2cosx+2cosxxdx=x2cosx+2xdsinx=x2cosx+2xsinx+2cosx+C\begin{align*} \int x^2\sin x\mathrm dx&=\int x^2\mathrm d(\cos x)\\ &=-(x^2\cos x-\int \cos x\cdot 2x\mathrm dx)\\ &=-x^2\cos x+2\int \cos x \cdot x\mathrm dx\\ &=-x^2\cos x+2\int x\mathrm d\sin x\\ &=-x^2\cos x+2x\sin x+2\cos x+C \end{align*}

移入优先级:反三角函数 > 对数函数 > 幂函数 > 指数函数 > 三角函数

xexdx=xdex=xexexdx=xexex+C\begin{align*} \int xe^x\mathrm dx&=\int x\mathrm de^x\\ &=xe^x-\int e^x\mathrm dx\\ &=xe^x-e^x+C \end{align*}
  1. excosxdx\displaystyle \int e^x\cos x\mathrm dx

法一:

原式=cosxdex=excosxexdcosx=excosx+exsinxdx=excosx+sinxdex=excosx+exsinxexcosxdx\begin{align*} 原式&=\int \cos x\mathrm de^x\\ &=e^x\cos x-\int e^x\mathrm d\cos x\\ &=e^x\cos x+\int e^x\sin x\mathrm dx\\ &=e^x\cos x+\int \sin x\mathrm de^x\\ &=e^x\cos x+e^x\sin x-\int e^x\cos x\mathrm dx \end{align*}

原式=12(excosx+exsinx)+C\therefore 原式=\dfrac{1}{2}(e^x\cos x+e^x\sin x)+C

法二:

原式=excosxdx=exdsinx=exsinxsinxexdx=exsinx+exdcosx=exsinx+excosxcosxexdx\begin{align*} 原式&=\int e^x\cos x\mathrm dx\\ &=\int e^x\mathrm d\sin x\\ &=e^x\sin x-\int \sin xe^x\mathrm dx\\ &=e^x\sin x+\int e^x\mathrm d\cos x\\ &=e^x\sin x+e^x\cos x-\int \cos x\cdot e^x\mathrm dx \end{align*}

原式=12(excosx+exsinx)+C\therefore 原式=\dfrac{1}{2}(e^x\cos x+e^x\sin x)+C

  1. x2+a2dx\displaystyle \int \sqrt{x^2+a^2}\mathrm dx

解:令 x=atantx=a\tan t,则原式 =a2sec3tdt=a^2\int \sec^3t \mathrm dt

考虑 I=sec3tdtI=\int \sec^3t\mathrm dt

I=sectd(tant)=secttanttantd(sect)=secttanttan2tsectdt=secttant(sec2t1)sectdt=secttantsec3tdt+sectdt=secttantI+lnsect+tant+C1\begin{align*} I&=\int \sec t\mathrm d(\tan t)\\ &=\sec t\tan t-\int \tan t\mathrm d(\sec t)\\ &=\sec t\tan t-\int \tan^2t\sec t\mathrm dt\\ &=\sec t\tan t-\int (\sec^2t-1)\sec t\mathrm dt\\ &=\sec t\tan t-\int \sec^3t\mathrm dt+\int \sec t\mathrm dt\\ &=\sec t\tan t-I+\ln |\sec t+\tan t|+C_1 \end{align*}

解得 I=12(secttant+lnsect+tant+C)I=\dfrac{1}{2}(\sec t\tan t+\ln|\sec t+\tan t|+C)

\therefore 原式 =12(xx2+a2+a2lnxa+x2+a2a2)+C=\dfrac{1}{2}(x\sqrt{x^2+a^2}+a^2\ln|\dfrac{x}{a}+\sqrt{\dfrac{x^2+a^2}{a^2}}|)+C

  1. In=1(a2+x2)ndx\displaystyle I_n=\int \dfrac{1}{(a^2+x^2)^n}\mathrm dx 的递推公式

解:

In=x(a2+x2)nx(n)2x(a2+x2)n+1dx=x(a2+x2)n+2nx2+a2a2(a2+x2)n+1dx=x(a2+x2)n+2nIn2na2In+1\begin{align*} I_n&=\dfrac{x}{(a^2+x^2)^n}-\int x(-n)\dfrac{2x}{(a^2+x^2)^{n+1}}\mathrm dx\\ &=\dfrac{x}{(a^2+x^2)^n}+2n\int \dfrac{x^2+a^2-a^2}{(a^2+x^2)^{n+1}}\mathrm dx\\ &=\dfrac{x}{(a^2+x^2)^n}+2nI_n-2na^2I_{n+1} \end{align*}
  1. f(x)f(x) 的一个原函数是 cosxx\dfrac{\cos x}{x},求 xf(x)dx\displaystyle \int xf'(x)\mathrm dx

解:f(x)=(cosxx)=xsinxcosxx2f(x)=(\dfrac{\cos x}{x})'=\dfrac{-x\sin x-\cos x}{x^2}

xf(x)dx=xdf(x)=xf(x)+f(x)dx=sinxxcosxx+cosxx+C=sinx+C\begin{align*} \int xf'(x)\mathrm dx&=\int x\mathrm df(x)\\ &=xf(x)+\int f(x)\mathrm dx\\ &=\dfrac{-\sin x\cdot x-\cos x}{x}+\dfrac{\cos x}{x}+C\\ &=-\sin x+C \end{align*}
4.2 换元法与分部积分法
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00