307 字
2 分钟
3.2 泰勒公式

§3.2\S 3.2 泰勒公式#

Tn(x)=a0+a1(xx0)+a2(xx0)2++an(xx0)n(f(x))T_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^n(\approx f(x)) 为泰勒公式,aka_k 为系数,且 ak=1k!f(k)(x0)a_k=\dfrac{1}{k!}f^{(k)}(x_0)

一、带有佩亚诺型余项的泰勒公式#

  • 定理:若 f(x)f(x)U(x0)U(x_0)nn 阶可导,则 f(x)=f(x0)+11!f(x0)(xx0)+12!f(x0)(xx0)++1n!f(n)(x0)(xx0)+o[(xx0)n]高阶无穷小Rn(x)f(x)=f(x_0)+\dfrac{1}{1!}f'(x_0)(x-x_0)+\dfrac{1}{2!}f''(x_0)(x-x_0)+\cdots+\dfrac{1}{n!}f^{(n)}(x_0)(x-x_0)+\underset{高阶无穷小R_n(x)}{o[(x-x_0)^n]}

证:只需说明 limx0Rn(x)(xx0)n=0\displaystyle \lim_{x\to 0}\dfrac{R_n(x)}{(x-x_0)^n}=0

Rn(x0)=f(x0)Tn(x0)=0R_n(x_0)=f(x_0)-T_n(x_0)=0

Rn(x)0(xx0)n0=Rn(x)Rn(x0)(xx0)n(x0x0)n=Rn(ξ1)Sn(ξ1)\dfrac{R_n(x)-0}{(x-x_0)^n-0}=\dfrac{R_n(x)-R_n(x_0)}{(x-x_0)^n-(x_0-x_0)^n}=\dfrac{R'n(\xi_1)}{S'n(\xi_1)}

应用 n1n-1 次柯西中值定理得 Rn(ξ)Sn(ξ)==Rn(n1)(ξn1)Sn(n1)(ξn1)=f(n1)(x0)T(n1)(x0)n!(ξn1x0)=1n!(f(n1)ξn1f(n1)(x0)ξn1x0f(n)x0)0\dfrac{R'_n(\xi)}{S'_n(\xi)}=\cdots=\dfrac{R_n^{(n-1)}(\xi_{n-1})}{S_n^{(n-1)}(\xi_{n-1})}=\dfrac{f^{(n-1)}(x_0)-T^{(n-1)}(x_0)}{n!(\xi_{n-1}-x_0)}=\dfrac{1}{n!}(\dfrac{f^{(n-1)}\xi_{n-1}-f^{(n-1)}(x_0)}{\xi_{n-1}-x_0}-f^{(n)}x_0)\to 0

Sn=(xx0)nS'_n=(x-x_0)^{n}

f(x)=f(x0)+11!f(x0)(xx0)+12!f(x0)(xx0)++1(n1)!f(n1)(x0)(xx0)+o[(xx0)n]f(x)=f(x_0)+\dfrac{1}{1!}f'(x_0)(x-x_0)+\dfrac{1}{2!}f''(x_0)(x-x_0)+\cdots+\dfrac{1}{(n-1)!}f^{(n-1)}(x_0)(x-x_0)+o[(x-x_0)^n]

ak=f(k)(x0)k!f(k)(x0)=k!aka_k=\dfrac{f^{(k)}(x_0)}{k!}\Rightarrow f^{(k)}(x_0)=k!a_k

  • x0=0x_0=0 时,f(x)=f(0)+11!f(0)(x0)+12!f(0)(x0)++1(n1)!f(n1)(0)(x0)+o(xn)f(x)=f(0)+\dfrac{1}{1!}f'(0)(x-0)+\dfrac{1}{2!}f''(0)(x-0)+\cdots+\dfrac{1}{(n-1)!}f^{(n-1)}(0)(x-0)+o(x^n) 成为Maclaurin[麦克劳林]公式

常见函数的佩亚诺型麦克劳林展开式#

  1. y=exy=e^x

解:f(k)=e0=1f^{(k)}=e^0=1

ex=1+11!x+12!x2++1n!xn+o(xn)e^x=1+\dfrac{1}{1!}x+\dfrac{1}{2!}x^2+\cdots+\dfrac{1}{n!}x^n+o(x^n)

  1. sinx=xx33!+x55!x77!++(1)k11(2k1)!x2k1+o(x2k)\sin x=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+\cdots+(-1)^{k-1}\dfrac{1}{(2k-1)!}x^{2k-1}+o(x^{2k})

  2. cosx=1x22!+x44!+(1)k1(2k)!x2k+o(x2k)\cos x=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\cdots+(-1)^k\dfrac{1}{(2k)!}x^{2k}+o(x^{2k})

  3. 11x=1+x+x2+x3++xn+o(xn)\dfrac{1}{1-x}=1+x+x^2+x^3+\cdots+x^n+o(x^n)

  4. 11+x=1x+x2x3++(1)nxn+o(xn)\dfrac{1}{1+x}=1-x+x^2-x^3+\cdots+(-1)^nx^n+o(x^n)

  5. ln(1+x)=xx22+x33+(1)n1xnn+o(xn)\ln (1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots+(-1)^{n-1}\dfrac{x^n}{n}+o(x^n)

  6. ln(1x)=xx22x33xnn+o(xn)\ln (1-x)=-x-\dfrac{x^2}{2}-\dfrac{x^3}{3}-\cdots-\dfrac{x^n}{n}+o(x^n)

  7. (1+x)α=1+αx+α(α1)2!x2++α(α1)(αn+1)n!xn+o(xn)(1+x)^\alpha=1+\alpha x+\dfrac{\alpha (\alpha -1)}{2!}x^2+\cdots+\dfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+o(x^n)

例题#

  1. f(x)=lnxf(x)=\ln x,求其在 x=2x=2 处的泰勒公式

解: f(x)=a0+a1(x2)+a2(x2)2++an(x2)n+o[(x2)n]f(x)=a_0+a_1(x-2)+a_2(x-2)^2+\cdots+a_n(x-2)^n+o[(x-2)^n]

ak=f(k)(2)k!a_k=\dfrac{f^{(k)}(2)}{k!}

f(x)=lnx=ln(2+x2)=ln[2(1+x22)]=ln2+ln(1+x22)=ln2+x2212(x22)2+13(x22)3+(1)n11n(x22)n+o[(x2)n]\begin{align*} f(x)=\ln x=\ln(2+x-2)&=\ln[2(1+\dfrac{x-2}{2})]\\ &=\ln 2+\ln(1+\dfrac{x-2}{2})\\ &=\ln 2+\dfrac{x-2}{2}-\dfrac{1}{2}\cdot (\dfrac{x-2}{2})^2+\dfrac{1}{3}\cdot (\dfrac{x-2}{2})^3-\cdots+(-1)^{n-1}\dfrac{1}{n}\cdot (\dfrac{x-2}{2})^n+o[(x-2)^n] \end{align*}
  1. f(x)=1x2+5x+6f(x)=\dfrac{1}{x^2+5x+6},求其在 x=1x=1 处的泰勒公式

解: f(x)=a0+a1(x1)+a2(x1)2++an(x1)n+o[(x1)n]f(x)=a_0+a_1(x-1)+a_2(x-1)^2+\cdots+a_n(x-1)^n+o[(x-1)^n]

f(x)=1(x+2)(x+3)=1x+21x+3=13+(x1)14+(x1)=13(11+x13)14(11+x14)后续过程略\begin{align*} f(x)=\dfrac{1}{(x+2)(x+3)}&=\dfrac{1}{x+2}-\dfrac{1}{x+3}\\ &=\dfrac{1}{3+(x-1)}-\dfrac{1}{4+(x-1)}\\ &=\dfrac{1}{3}\left(\dfrac{1}{1+\frac{x-1}{3}}\right)-\dfrac{1}{4}\left(\dfrac{1}{1+\frac{x-1}{4}}\right)\\ 后续过程略 \end{align*}
limx0xsinxx3=limx0x[xx33!+o(x3)]x3=16\begin{align*} \lim_{x\to 0}\dfrac{x-\sin x}{x^3}&=\lim_{x\to 0}\dfrac{x-[x-\frac{x^3}{3!}+o(x^3)]}{x^3}\\ &=\dfrac{1}{6} \end{align*}
limx0exsinxx(1+x)x3=limx0(1+x1!+x22!+x33!+o(x3))(xx33!+o(x3))x(1+x)x3=limx0x+x2+(1216)x3+o(x3)+xx2x3=13\begin{align*} \lim_{x\to 0}\dfrac{e^x\sin x-x(1+x)}{x^3}&=\lim_{x\to 0}\dfrac{(1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3))(x-\frac{x^3}{3!}+o(x^3))-x(1+x)}{x^3}\\ &=\lim_{x\to 0}\dfrac{x+x^2+(\frac{1}{2}-\frac{1}{6})x^3+o(x^3)+x-x^2}{x^3}\\ &=\dfrac{1}{3} \end{align*}

二、带有拉格朗日型余项的泰勒公式#

  • 定理[泰勒中值定理]:若 f(x)f(x)[a,b][a,b]nn 阶可导且连续,(a,b)(a,b) 上存在 n+1n+1 阶导数,则对于任意 x,x0[a,b]x,x_0 \in [a,b],存在 ξ(a,b)\xi \in (a,b) 使得
f(x)=f(x0)+f(x0)1!(xx0)++f(n)(x0)n!(xx0)n+f(n+1)(ξ)(n+1)!(xx0)n+1f(x)= f(x_0)+\dfrac{f'(x_0)}{1!}(x-x_0)+\cdots+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}
  • x0=0x_0=0 时的麦克劳林公式 (ξ(0,x))(\xi \in (0,x))
f(x)=f(0)+f(0)1!x++f(n)(0)n!xn+f(n+1)(ξ)(n+1)!xn+1f(n+1)(θx)(n+1)!xn+1θ(0,1)f(x)=f(0)+\dfrac{f'(0)}{1!}x+\cdots+\dfrac{f^{(n)}(0)}{n!}x^n+\underset{或\dfrac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}\quad \theta \in(0,1)}{\dfrac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1}}

常见函数的拉格朗日型麦克劳林展开式#

  1. ex=1+11!x+12!x2++1n!xn+eθx(n+1)!xn+1(0<θ<1,xR)e^x=1+\dfrac{1}{1!}x+\dfrac{1}{2!}x^2+\cdots+\dfrac{1}{n!}x^n+\dfrac{e^{\theta x}}{(n+1)!}x^{n+1}(0\lt \theta \lt 1,x\in R)

  2. sinx=xx33!+x55!x77!++(1)m11(2m1)!x2m1+(1)mcosθx(2m+1)!x2m+1(0<θ<1,xR)\sin x=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+\cdots+(-1)^{m-1}\dfrac{1}{(2m-1)!}x^{2m-1}+(-1)^m\dfrac{\cos \theta x}{(2m+1)!}x^{2m+1}(0\lt \theta \lt 1,x\in R)

  3. cosx=1x22!+x44!+(1)mk1(2m)!x2m+(1)m+1cosθx(2m+2)!x2m+2(0<θ<1,xR)\cos x=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\cdots+(-1)^mk\dfrac{1}{(2m)!}x^{2m}+(-1)^{m+1}\dfrac{\cos \theta x}{(2m+2)!}x^{2m+2}(0\lt \theta \lt 1,x\in R)

  4. ln(1+x)=xx22+x33+(1)n1xnn+(1)nxn+1(n+1)(1+θx)n+1(0<θ<1,x>1)\ln (1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots+(-1)^{n-1}\dfrac{x^n}{n}+(-1)^n\dfrac{x^{n+1}}{(n+1)(1+\theta x)^{n+1}}(0\lt \theta \lt 1,x\gt -1)

  5. (1+x)α=1+αx+α(α1)2!x2++α(α1)(αn+1)n!xn+α(α1)(αn)(n+1)!(1+θx)n1xn+1(0<θ<1,x>1)(1+x)^\alpha=1+\alpha x+\dfrac{\alpha (\alpha -1)}{2!}x^2+\cdots+\dfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\dfrac{\alpha(\alpha-1)\cdots(\alpha-n)}{(n+1)!}(1+\theta x)^{-n-1}x^{n+1}(0\lt \theta \lt 1,x\gt -1)

  6. 11x=1+x+x2+x3++xn+xn+1(1θx)n+2(0<θ<1,x<1)\dfrac{1}{1-x}=1+x+x^2+x^3+\cdots+x^n+\dfrac{x^{n+1}}{(1-\theta x)^{n+2}}(0\lt \theta \lt 1,|x|\lt 1)

3.2 泰勒公式
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00