一、带有佩亚诺型余项的泰勒公式#
- 定理:若 f(x) 在 U(x0) 内 n 阶可导,则 f(x)=f(x0)+1!1f′(x0)(x−x0)+2!1f′′(x0)(x−x0)+⋯+n!1f(n)(x0)(x−x0)+高阶无穷小Rn(x)o[(x−x0)n]
证:只需说明 x→0lim(x−x0)nRn(x)=0
Rn(x0)=f(x0)−Tn(x0)=0
(x−x0)n−0Rn(x)−0=(x−x0)n−(x0−x0)nRn(x)−Rn(x0)=S′n(ξ1)R′n(ξ1)
应用 n−1 次柯西中值定理得
Sn′(ξ)Rn′(ξ)=⋯=Sn(n−1)(ξn−1)Rn(n−1)(ξn−1)=n!(ξn−1−x0)f(n−1)(x0)−T(n−1)(x0)=n!1(ξn−1−x0f(n−1)ξn−1−f(n−1)(x0)−f(n)x0)→0
Sn′=(x−x0)n
f(x)=f(x0)+1!1f′(x0)(x−x0)+2!1f′′(x0)(x−x0)+⋯+(n−1)!1f(n−1)(x0)(x−x0)+o[(x−x0)n]
ak=k!f(k)(x0)⇒f(k)(x0)=k!ak
- 当 x0=0 时,f(x)=f(0)+1!1f′(0)(x−0)+2!1f′′(0)(x−0)+⋯+(n−1)!1f(n−1)(0)(x−0)+o(xn) 成为Maclaurin[麦克劳林]公式
常见函数的佩亚诺型麦克劳林展开式#
- y=ex
解:f(k)=e0=1
ex=1+1!1x+2!1x2+⋯+n!1xn+o(xn)
-
sinx=x−3!x3+5!x5−7!x7+⋯+(−1)k−1(2k−1)!1x2k−1+o(x2k)
-
cosx=1−2!x2+4!x4−⋯+(−1)k(2k)!1x2k+o(x2k)
-
1−x1=1+x+x2+x3+⋯+xn+o(xn)
-
1+x1=1−x+x2−x3+⋯+(−1)nxn+o(xn)
-
ln(1+x)=x−2x2+3x3−⋯+(−1)n−1nxn+o(xn)
-
ln(1−x)=−x−2x2−3x3−⋯−nxn+o(xn)
-
(1+x)α=1+αx+2!α(α−1)x2+⋯+n!α(α−1)⋯(α−n+1)xn+o(xn)
- f(x)=lnx,求其在 x=2 处的泰勒公式
解:
f(x)=a0+a1(x−2)+a2(x−2)2+⋯+an(x−2)n+o[(x−2)n]
ak=k!f(k)(2)
f(x)=lnx=ln(2+x−2)=ln[2(1+2x−2)]=ln2+ln(1+2x−2)=ln2+2x−2−21⋅(2x−2)2+31⋅(2x−2)3−⋯+(−1)n−1n1⋅(2x−2)n+o[(x−2)n]
- f(x)=x2+5x+61,求其在 x=1 处的泰勒公式
解:
f(x)=a0+a1(x−1)+a2(x−1)2+⋯+an(x−1)n+o[(x−1)n]
f(x)=(x+2)(x+3)1后续过程略=x+21−x+31=3+(x−1)1−4+(x−1)1=31(1+3x−11)−41(1+4x−11)
x→0limx3x−sinx=x→0limx3x−[x−3!x3+o(x3)]=61
x→0limx3exsinx−x(1+x)=x→0limx3(1+1!x+2!x2+3!x3+o(x3))(x−3!x3+o(x3))−x(1+x)=x→0limx3x+x2+(21−61)x3+o(x3)+x−x2=31