469 字
2 分钟
2.2 求导法则

§2.2\S 2.2 求导法则#

一、四则运算#

u(x)u(x)v(x)v(x) 可导

加减法则 [u(x)±v(x)]=u(x)±v(x)[u(x)\pm v(x)]'=u'(x)\pm v'(x)#

推广:[u1(x)+u2(x)++un(x)]=u1(x)+u2(x)+un(x)[u_1(x)+u_2(x)+\cdots +u_n(x)]'=u_1'(x)+u_2'(x)+\cdots u_n'(x)

乘法则 [u(x)v(x)]=u(x)v(x)+u(x)v(x)[u(x)v(x)]'=u'(x)v(x)+u(x)v'(x)#

  • 特别地,[Cu(x)]=Cu(x)[Cu'(x)]'=Cu'(x)(C为常数)
  • 证明:
左边=limΔx0(u(x)+Δx)(v(x)+Δx)u(x)v(x)Δx=limΔx0[u(x+Δx)v(x+Δx)u(x)v(x+Δx)]+u(x)[v(x+Δx)v(x)]Δx=limΔx0{[u(x+Δx)u(x)Δxv(x+Δx)]+[u(x)v(x+Δx)v(x)Δx]}=u(x)v(x)+u(x)v(x)=右边\begin{align*} 左边 &= \lim_{\Delta x\to 0}\dfrac{(u(x)+\Delta x)(v(x)+\Delta x)-u(x)v(x)}{\Delta x} \\ &= \lim_{\Delta x\to 0}\dfrac{[u(x+\Delta x)v(x+\Delta x)-u(x)v(x+\Delta x)]+u(x)[v(x+\Delta x)-v(x)]}{\Delta x} \\ &= \lim_{\Delta x\to 0}\left\{\left[\dfrac{u(x+\Delta x)-u(x)}{\Delta x}v(x+\Delta x)\right]+\left[u(x)\dfrac{v(x+\Delta x)-v(x)}{\Delta x}\right]\right\}\\ &= u'(x)v(x)+u(x)v'(x) = 右边 \end{align*}

推广:[u1(x)u2(x)un(x)]=u1(x)u2(x)u3(x)un(x)+u1(x)u2(x)u3(x)un(x)++u1(x)u2(x)un1(x)un(x)[u_1(x)u_2(x)\cdots u_n(x)]'=u_1'(x)u_2(x)u_3(x)\cdots u_n(x)+u_1(x)u_2'(x)u_3(x)\cdots u_n(x)+\cdots +u_1(x)u_2(x)\cdots u_{n-1}(x)u_n'(x)

除法则 [u(x)v(x)]=u(x)v(x)u(x)v(x)v2(x)\left[\dfrac{u(x)}{v(x)}\right]'=\dfrac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}#

  • 特别地,[1v(x)]=v(x)v2(x)\left[\dfrac{1}{v(x)}\right]'=-\dfrac{v'(x)}{v^2(x)}
  • 证明:
左边=limΔx0u(x+Δx)v(x+Δx)u(x)v(x)Δx=limΔx0u(x+Δx)v(x)u(x)v(x+Δx)Δxv(x+Δx)v(x)=limΔx0[u(x+Δx)u(x)Δxv(x)u(x)v(x+Δx)v(x)Δx]1v(x+Δx)v(x)=u(x)v(x)u(x)v(x)v2(x)=右边 \begin{align*} 左边&=\lim_{\Delta x\to 0}\dfrac{\frac{u(x+\Delta x)}{v(x+\Delta x)}-\frac{u(x)}{v(x)}}{\Delta x}\\ &=\lim_{\Delta x\to 0}\dfrac{u(x+\Delta x)v(x)-u(x)v(x+\Delta x)}{\Delta x \cdot v(x+\Delta x)v(x)}\\ &=\lim_{\Delta x\to 0}\left[\dfrac{u(x+\Delta x)-u(x)}{\Delta x}v(x)-u(x)\dfrac{v(x+\Delta x)-v(x)}{\Delta x}\right] \cdot \dfrac{1}{v(x+\Delta x)v(x)}\\ &=\dfrac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}=右边 \end{align*}

二、反函数的求导法则#

定理:y=f(x)y=f(x)U(x)U(x) 严格单调且可导 x=ϕ(y)\Rightarrow x=\phi(y) 在点yy 可导,且 ϕ(y)=1f(x)\phi'(y)=\dfrac{1}{f'(x)}

证明:

\begin{align*}

\phi’(y)&= \lim_{\Delta y\to 0}\dfrac{\phi(y+\Delta y)-\phi(y)}{\Delta y}\ &=\lim_{\Delta y\to 0}\dfrac{\Delta x}{\Delta y}\ &=\lim_{\Delta y\to 0}\dfrac{1}{\frac{\Delta y}{\Delta x}}\ &=\lim_{\Delta x\to 0}\dfrac{1}{\frac{\Delta y}{\Delta x}}\ &=\dfrac{1}{f’(x)} \end{align*}

三、复合函数求导#

定理:y=f(u)y=f(u) 可导,u=ϕ(x)u=\phi(x) 可导 y=f[ϕ(x)]\Rightarrow y=f[\phi(x)] 可导且

{f[ϕ(x)]}=f(u)ϕ(x)dydx=dydududx(链导法则)\{f[\phi(x)]\}' = f'(u)\phi'(x) \\ \dfrac{\mathrm d y}{\mathrm d x}=\dfrac{\mathrm d y}{\mathrm d u}\dfrac{\mathrm d u}{\mathrm d x} (链导法则)
  • 推广:dydx=dydududvdvdx\dfrac{\mathrm d y}{\mathrm d x}=\dfrac{\mathrm d y}{\mathrm d u}\dfrac{\mathrm d u}{\mathrm d v}\dfrac{\mathrm d v}{\mathrm d x}

导数的基本公式:

  1. (C)=0(C)'=0CC为常数
  2. (xa)=axa1(x^a)'=ax^{a-1}
  3. (ax)=axlna(a^x)'=a^x\ln a(ex)=ex(e^x)'=e^x
  4. (logax)=1xlna(\log_a{x})'=\dfrac{1}{x\ln a}(lnx)=1x(\ln x)'=\dfrac{1}{x}
  5. (sinx)=cosx(\sin x)'=\cos x
  6. (cosx)=sinx(\cos x)'=-\sin x
  7. (tanx)=sec2x(\tan x)'=\sec ^2x
  8. (cotx)=csc2x(\cot x)'=-\csc ^2x
  9. (secx)=secxtanx(\sec x)'=\sec x\tan x
  10. (cscx)=cscxcotx(\csc x)'=-\csc x\cot x
  11. (arcsinx)=11x2(\arcsin x)'=\dfrac{1}{\sqrt{1-x^2}}
  12. (arccosx)=11x2(\arccos x)'=-\dfrac{1}{\sqrt{1-x^2}}
  13. (arctanx)=11+x2(\arctan x)'=\dfrac{1}{1+x^2}
  14. (arccotx)=11+x2(\text{arccot}x)'=-\dfrac{1}{1+x^2}
  15. (sinhx)=coshx(\sinh x)'=\cosh x(coshx)=sinhx(\cosh x)'=\sinh x
  16. (tanhx)=1cosh2x(\tanh x)'=\dfrac{1}{\cosh ^2x}(cothx)=1sinh2x(\coth x)'=-\dfrac{1}{\sinh ^2x}
  17. (arcsinhx)=1x2+1(\text{arcsinh}x)'=\dfrac{1}{\sqrt{x^2+1}}
  18. (arccoshx)=1x21(\text{arccosh}x)'=\dfrac{1}{\sqrt{x^2-1}}
  19. (arctanhx)=11x2(\text{arctanh}x)'=\dfrac{1}{1-x^2}

例题#

    • y=sinx2y=\sin x^2,求 yy'

      解:(u=x2)y=f(u)ϕ(x)=cosu2x=cosx22x(u=x^2)\quad y'=f'(u)\phi'(x)=\cos u\cdot 2x=\cos x^2 \cdot 2x

    • y=tan3(lnx)y=\tan ^3(\ln x),求 yy'

      解:(y=u3,u=tanv,v=lnx)y=3u2sec2v1x=3tan2(lnx)sec2(lnx)1x(y=u^3,u=\tan v,v=\ln x)\quad y'=3u^2\sec^2v\dfrac{1}{x}=3\tan^2(\ln x)\sec^2 (\ln x)\dfrac{1}{x}

    • y=u(x)v(x)y=u(x)^{v(x)}u(x)>0u(x)\gt 0u(x),v(x)u(x),v(x) 可导,求 yy'

      解:

      • 法一 lny=v(x)lnu(x)\ln y=v(x)\ln u(x)

        两边对 xx 求导 1yy=v(x)lnu(x)+v(x)1u(x)u(x)\dfrac{1}{y}\cdot y'=v'(x)\ln u(x)+v(x)\dfrac{1}{u(x)}u'(x) y=u(x)v(x)[v(x)lnu(x)+v(x)u(x)u(x)]\therefore y'=u(x)^{v(x)}[v'(x)\ln u(x)+v(x)\dfrac{u'(x)}{u(x)}]

      • 法二 原函数可写为y=elnu(x)v(x)y=e^{\ln u(x)v(x)}

        y=eu(x)u(x)v(x)+lnu(x)v(x)y'=e^{\frac{u'(x)}{u(x)}v(x)+\ln u(x)v'(x)}

  1. y=(x+5)2(x4)13(x+2)5(x+4)12y=\dfrac{(x+5)^2(x-4)^{\frac{1}{3}}}{(x+2)^5(x+4)^{\frac{1}{2}}},求yy'

    解:

lny=2ln(x+5)+13ln(x4)5ln(x+2)12ln(x+4)两边对x求导得1yy=2x+5+13(x4)5x+212(x+4)y=(x+5)2(x4)13(x+2)5(x+4)12[2x+5+13(x4)5x+212(x+4)] \ln y=2\ln (x+5)+\dfrac{1}{3}\ln (x-4)-5\ln(x+2)-\dfrac{1}{2}\ln(x+4) \\ 两边对 x 求导得\quad \dfrac{1}{y}\cdot y'=\dfrac{2}{x+5}+\dfrac{1}{3(x-4)}-\dfrac{5}{x+2}-\dfrac{1}{2(x+4)}\\ y'=\dfrac{(x+5)^2(x-4)^{\frac{1}{3}}}{(x+2)^5(x+4)^{\frac{1}{2}}}\cdot \left[\dfrac{2}{x+5}+\dfrac{1}{3(x-4)}-\dfrac{5}{x+2}-\dfrac{1}{2(x+4)}\right]
  1. y=lnxy=\ln |x|,求yy'

    解:

y=\begin{cases} \ln x&, x\gt 0\\ \ln(-x)&,x\lt 0 \end{cases} \quad \\ y'=\begin{cases} \dfrac{1}{x} &,x\gt 0\\ -\dfrac{1}{x}\cdot -1=\dfrac{1}{x} &,x\lt 0 \end{cases} \quad \\ \therefore y'=\dfrac{1}{x}(x\ne 0) $$ 4. $$ f(x)=\begin{cases} |x|\arctan \dfrac{1}{x}&,x \ne 0 \\ 0&,x = 0 \end{cases}
求导并讨论$f'(x)$ 的连续性
解:$\displaystyle \lim_{x\to 0}f(x)=\lim_{x\to 0}|x|\arctan \dfrac{1}{x}=0=f(0)$,$\therefore f(x)$ 在 $(-\infty,+\infty)$ 上连续
* $x\gt 0$时,$f'(x)=\arctan \dfrac{1}{x}-\dfrac{x}{1+x^2}$
* $x\lt 0$时,$f'(x)=-\arctan \dfrac{1}{x}+\dfrac{x}{1+x^2}$
$\therefore x\ne 0$时,$f'(x)=\dfrac{x}{|x|}\arctan \dfrac{1}{x}-\dfrac{|x|}{1+x^2}=g(x)$,$f'(0)=\dfrac{\pi}{2}$
$$
g(x)=f'(x)=\begin{cases}
\dfrac{x}{|x|}\arctan \dfrac{1}{x}-\dfrac{|x|}{1+x^2} &,x\ne 0\\
\dfrac{\pi}{2}&,x=0
\end{cases}
$$
又 $\displaystyle \because \lim_{x\to 0^+}f'(x)=\lim_{x\to 0^-}f'(x)=\dfrac{\pi}{2}=f(0)$
$\therefore f'(x)$ 在 $x=0$上连续,$f'(x)$ 在 $(-\infty,+\infty)$ 上连续
2.2 求导法则
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00