382 字
2 分钟
1.7 无穷小的比较

§1.7\S1.7 无穷小的比较#

本章节的重点在于同一趋向下无穷小的比较

  • 定义:limxx0α(x)=0\displaystyle \lim_{x\to x_0}\alpha(x)=0limxx0β(x)=0\displaystyle \lim_{x\to x_0}\beta(x)=0
  1. limxx0α(x)β(x)=0\displaystyle \lim_{x\to x_0}\dfrac{\alpha(x)}{\beta(x)}=0,则当 xx0x\to x_0 时,β(x)\beta(x)α(x)\alpha(x)低阶无穷小量,α(x)\alpha(x)β(x)\beta(x) 的高阶无穷小量,记作

    α(x)=o(β(x))(xx0)\alpha(x) = o(\beta(x))\quad (x\to x_0)
    • x2=o(x)x^2=o(x)
    • limxx0o(β(x0))β(x)=0\displaystyle \lim_{x\to x_0}\dfrac{o(\beta(x_0))}{\beta(x)}=0
  2. limxx0α(x)β(x)=C0\displaystyle \lim_{x\to x_0}\dfrac{\alpha(x)}{\beta(x)}=C\ne 0,则当 xx0x\to x_0 时,α(x)\alpha(x)β(x)\beta(x)同阶无穷小量

    • 如:limx0sin2xx=2\displaystyle \lim_{x\to 0}\dfrac{\sin 2x}{x}=2f(x)=sin2xf(x)=\sin 2xg(x)=xg(x)=xx0x\to 0时为同阶无穷小量
  3. limxx0α(x)β(x)=1\displaystyle \lim_{x\to x_0}\dfrac{\alpha(x)}{\beta(x)}=1,则当 xx0x\to x_0 时,α(x)\alpha(x)β(x)\beta(x)等价无穷小量,记为

    α(x)β(x)(xx0)\alpha(x) \sim \beta(x) \quad (x\to x_0)
    • 如:sinxx(x0)\sin x \sim x(x\to 0)
  4. limxx0α(x)βk(x)=C0\displaystyle \lim_{x\to x_0}\dfrac{\alpha(x)}{\beta^k(x)}=C\ne 0,则当 xx0x\to x_0 时,α(x)\alpha(x)β(x)\beta(x)k阶无穷小量

    • 如:limx0sinx2x2=1\displaystyle \lim_{x\to 0}\dfrac{\sin x^2}{x^2}=1f(x)=sinx2f(x)=\sin x^2g(x)=xg(x)=x的二阶无穷小量

几组常用的等价无穷小量:

  • xsinxtanxarcsinxarctanxex1ln(x+1)(x0)x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim e^x-1 \sim \ln (x+1) \qquad (x\to 0)
  • 1cosxx221-\cos x \sim \dfrac{x^2}{2}
  • 1+xn1xn\sqrt[n]{1+x}-1 \sim \dfrac{x}{n}
  • (1+x)α1αx(1+x)^\alpha -1 \sim \alpha x

定理(等阶无穷小代换)(积/商) xx0α1(x)α2(x)β1(x)β2(x)limxx0α2(x)β2(x)=limxx0α1(x)β1(x)x\to x_0 \quad \alpha_1(x)\sim \alpha_2(x) \quad \beta_1(x)\sim \beta_2(x) \Rightarrow \displaystyle \lim_{x\to x_0}\dfrac{\alpha_2(x)}{\beta_2(x)}=\displaystyle \lim_{x\to x_0}\dfrac{\alpha_1(x)}{\beta_1(x)} 推论:

\begin{align*} &f(x)\sim g(x) \ \Rightarrow&\lim_{x\to x_0}f(x)h(x)=\lim_{x\to x_0}g(x)h(x) \ &\lim_{x\to x_0}\dfrac{f(x)}{h(x)}=\lim_{x\to x_0}\dfrac{g(x)}{h(x)} \end{align*}

例题#

  1. 证明 1+xn11nx(x0)\sqrt[n]{1+x}-1\sim \dfrac{1}{n}x\quad (x\to 0)

    证:

    limx01+xn11nx=limx01+x11n×[(1+x)n1n+(1+x)n2n++1]=limx0nn=1 \begin{align*} \lim_{x\to 0}\dfrac{\sqrt[n]{1+x}-1}{\frac{1}{n}x}&=\lim_{x\to 0}\dfrac{1+x-1}{\frac{1}{n}\times \left[(1+x)^{\frac{n-1}{n}}+(1+x)^{\frac{n-2}{n}+\cdots + 1}\right]}\\ &=\lim_{x\to 0}\frac{n}{n}=1 \end{align*}
  2. 证明 ex1x(x0)e^x-1\sim x\quad (x\to 0)

    证:limx0ex1x=limt0tln(t+1)=limt01ln(t+1)1t=1lne=1\displaystyle \lim_{x\to 0}\dfrac{e^x-1}{x}=\lim_{t\to 0}\dfrac{t}{\ln(t+1)}=\lim_{t\to 0}\dfrac{1}{\ln (t+1)^\frac{1}{t}}=\dfrac{1}{\ln e}=1

  3. x3+aa(a>0)\sqrt{x^3+a}-\sqrt{a}\quad (a\gt 0)xx 的几阶无穷小?

    解:limx0x3+aaxk=limx0x3xk(x3+a+a)\displaystyle \lim_{x\to 0}\dfrac{\sqrt{x^3+a}-\sqrt{a}}{x^k}=\lim_{x\to 0}\dfrac{x^3}{x^k(\sqrt{x^3+a}+\sqrt{a})}

    • k>3k\gt 3时,极限无穷大
    • k<3k\lt 3时,极限是0
    • k=3k=3时,极限 12a0\frac{1}{2\sqrt{a}}\ne 0,3阶无穷小
  4. 计算下列极限值

    • limx0sin5xx=limx05xx=5\displaystyle \lim_{x\to 0}\dfrac{\sin 5x}{x}=\lim_{x\to 0}\dfrac{5x}{x}=5
    • limx0sin5xtan3x=limx05x3x=53\displaystyle \lim_{x\to 0}\dfrac{\sin 5x}{\tan 3x}=\lim_{x\to 0}\dfrac{5x}{3x}=\dfrac{5}{3}
    • limx01cos(1cosx2)x4=limx012(1cosx2)2x4=limx012x[12(x2)2]22=127\displaystyle \lim_{x\to 0}\dfrac{1-\cos(1-\cos\frac{x}{2})}{x^4}=\lim_{x\to 0}\dfrac{\frac{1}{2}(1-\cos \frac{x}{2})^2}{x^4}=\lim_{x\to 0}\dfrac{\frac{1}{2}x[\frac{1}{2}(\frac{x}{2})^2]^2}{2}=\dfrac{1}{2^7}
    • limx0tanxsinxx3=limx0sinx(1cosx1)x3=limx0x(1cosx)x3cosx=limx012x3x3cosx=12\displaystyle \lim_{x\to 0}\dfrac{\tan x-\sin x}{x^3}=\lim_{x\to 0}\dfrac{\sin x(\frac{1}{\cos x}-1)}{x^3}=\lim_{x\to 0}\dfrac{x(1-\cos x)}{x^3\cos x}=\lim_{x\to 0}\dfrac{\frac{1}{2}x^3}{x^3\cos x}=\dfrac{1}{2}
    • limx0sin2xsinxx=limx0sinx(2cosx1)x=1\displaystyle \lim_{x\to 0}\dfrac{\sin 2x-\sin x}{x}=\lim_{x\to 0}\dfrac{\sin x(2\cos x-1)}{x}=1
    • limαβeαeβαβ=limαβeβ(eαβ1)αβ=eβ\displaystyle \lim_{\alpha \to \beta}\dfrac{e^\alpha - e^\beta}{\alpha - \beta}=\lim_{\alpha \to \beta}\dfrac{e^\beta(e^{\alpha-\beta}-1)}{\alpha - \beta}=e^\beta
1.7 无穷小的比较
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00