730 字
4 分钟
1.6 极限的存在准则和两个重要极限

§1.6\S1.6 极限的存在准则和两个重要极限#

一、极限的存在准则#

1. 夹逼定理/迫敛性#

  1. 数列 {xn},{yn},{zn}\{x_n\},\{y_n\},\{z_n\}ynxnzny_n\le x_n\le z_n,且 limnyn=limnzn=a\displaystyle \lim_{n\to \infty}y_n=\lim_{n\to \infty}z_n=a,可得 limnxn=a\displaystyle \lim_{n\to \infty}x_n=a
  2. 函数 g(x)f(x)h(x)g(x)\le f(x)\le h(x),且 limxx0g(x)=limxx0h(x)=A\displaystyle \lim_{x\to x_0}g(x)=\lim_{x\to x_0}h(x)=A,可得 limxx0f(x)=A\displaystyle \lim_{x\to x_0}f(x)=A

证明:ϵ>0\forall \epsilon \gt 0N\exists Nn>Nn\gt N时, aϵ<yn<a+ϵa-\epsilon \lt y_n \lt a+\epsilonaϵ<zn<a+ϵa-\epsilon \lt z_n \lt a+\epsilon

aϵ<ynxnzn<a+ϵa-\epsilon \lt y_n \le x_n \le z_n \lt a+\epsilonxna<ϵ|x_n-a|\lt \epsilon limnxn=a\therefore \displaystyle \lim_{n\to \infty}x_n=a

例题#

  1. 证明 limnan=1(a>0a1)\displaystyle \lim_{n\to \infty}\sqrt[n]{a}=1\quad (a\gt 0且a \ne 1)

    解:若 a>1a\gt 1,令 λn=an1>0\lambda_n=\sqrt[n]{a}-1\gt 0an=1+λn\sqrt[n]{a}=1+\lambda_n

    a=(1+λn)n=1+nλn+n(n1)2λn2++λnnn(n1)2λn2\begin{align*} a=(1+\lambda_n)^n&=1+n\lambda_n+\frac{n(n-1)}{2}\lambda_n^2+\cdots+\lambda_n^n\\ &\ge \frac{n(n-1)}{2}\lambda_n^2 \end{align*}

    0λn2an(n1)0\le \lambda_n \le \sqrt{\dfrac{2a}{n(n-1)}}

    limn2an(n1)=0\because \displaystyle \lim_{n\to \infty} \sqrt{\dfrac{2a}{n(n-1)}}=0

    limnλn=0=limn(an1)\therefore \displaystyle \lim_{n\to \infty}\lambda_n=0=\lim_{n\to \infty}(\sqrt[n]{a}-1)limnan=1\displaystyle \lim_{n\to \infty}\sqrt[n]{a}=1

    0<a<10\lt a \lt 1时,limnan=limn11an=11=1\displaystyle \lim_{n\to \infty}\sqrt[n]{a}=\lim_{n\to \infty}\dfrac{1}{\sqrt[n]{\frac{1}{a}}}=\dfrac{1}{1}=1

    综上所述,limnan=1\displaystyle \lim_{n\to \infty}\sqrt[n]{a}=1 成立

  2. limn1234562n12n=?\displaystyle \lim_{n\to \infty}\dfrac{1}{2}\cdot \dfrac{3}{4}\cdot \dfrac{5}{6}\cdot \cdots \cdot \dfrac{2n-1}{2n}=?

    解:012×34×56××2n12nf(n)0\le \dfrac{1}{2}\times \dfrac{3}{4} \times \dfrac{5}{6}\times \cdots \times \dfrac{2n-1}{2n}\le f(n)

    (12×34×56××2n12n)2=12×12×34×34××2n12n×2n12n<12×23×34×45××2n12n×2n2n+1=12n+1 \begin{align*} \left(\dfrac{1}{2}\times \dfrac{3}{4} \times \dfrac{5}{6}\times \cdots \times \dfrac{2n-1}{2n}\right)^2&=\dfrac{1}{2}\times \dfrac{1}{2}\times \dfrac{3}{4}\times \dfrac{3}{4}\times \cdots \times \dfrac{2n-1}{2n}\times \dfrac{2n-1}{2n}\\ &\lt \dfrac{1}{2}\times \dfrac{2}{3}\times \dfrac{3}{4} \times \dfrac{4}{5}\times \cdots \times \dfrac{2n-1}{2n} \times \dfrac{2n}{2n+1} \\ &=\dfrac{1}{2n+1} \end{align*}

    limn12n+1=0\because \lim_{n\to \infty}\dfrac{1}{\sqrt{2n+1}}=0

    \therefore根据夹逼定理,原式 =0=0

2. 单调有界数列必有极限#

f(x)(a,b)上单调有界limxa+f(x),limxbf(x)存在f(x)在(a,b)上单调有界 \Rightarrow \lim_{x\to a^+}f(x) , \lim_{x\to b^-}f(x)存在

例题#

  1. x1=5,x2=5+5,,xn+1=5+xnx_1=\sqrt{5},x_2=\sqrt{5+\sqrt{5}},\cdots,x_{n+1}=\sqrt{5+x_n},证明 {xn}\{x_n\} 有极限,并求出它

    解:当 n=1n=1 时,x1=5<5+1x_1=\sqrt{5}\lt \sqrt{5}+1n=2n=2时,x2=5+5<5+25+1=5+1x_2=\sqrt{5+\sqrt{5}}\lt \sqrt{5+2\sqrt{5}+1}=\sqrt{5}+1

    xn<5+1x_n\lt \sqrt{5}+1,则

    xn+12=5+xn<5+5+1<5+25+1=(5+1)2\begin{align*} x_{n+1}^2=5+x_n&\lt \sqrt{5}+5+1 \\ &\lt 5+2\sqrt{5}+1 \\ &=(\sqrt{5}+1)^2 \end{align*}

    xn+1<5+1x_{n+1}\lt \sqrt{5}+1

    xn<5+1\therefore x_n\lt \sqrt{5}+1,即{xn}\{x_n\}有上界

    {xn}\because \{x_n\} 单调递增

    limnxn\therefore \displaystyle \lim_{n\to \infty}x_n存在

    limnxn=limnxn+1=a\displaystyle \lim_{n\to \infty}x_n=\lim_{n\to \infty}x_{n+1}=a,则a=5+aa=\sqrt{5+a},解出a=1+212(舍负)a=\dfrac{1+\sqrt{21}}{2}(舍负)

    limnxn=1+212\therefore \lim_{n\to \infty}x_n=\dfrac{1+\sqrt{21}}{2}

  2. 0<x0<3,xn+1=3(1+xn)3+xn,n=0,1,2,0\lt x_0\lt \sqrt{3}, x_{n+1}=\dfrac{3(1+x_n)}{3+x_n},n=0,1,2,\cdots,证明 {xn}\{x_n\} 有极限,并求极限值

    解:当 n=0n=0 时,x0<3x_0\lt \sqrt{3}xn<3x_n\lt \sqrt{3},则

    xn+13=3(xn3)3(xn3))3+xn=(33)(xn3)3+xn<0\begin{align*} x_{n+1}-\sqrt{3}&=\dfrac{3(x_n-\sqrt{3})-\sqrt{3}(x_n-\sqrt{3}))}{3+x_n}\\ &=\dfrac{(3-\sqrt{3})(x_n-\sqrt{3})}{3+x_n}\lt 0 \end{align*}

    xn+1<3x_{n+1}\lt \sqrt{3},即 {xn}\{x_n\} 有上界

    x1x0=3x023+x02>0\because x_1-x_0=\dfrac{3-x_0^2}{3+x_0^2}\gt 0, xn+1xn=3xn23+xn2>0x_{n+1}-x_n=\dfrac{3-x_n^2}{3+x_n^2}\gt 0

    {xn}\therefore \{x_n\} 单调递增

    limnxn\therefore \displaystyle \lim_{n\to \infty}x_n 存在,设 limnxn=limnxn+1=a\displaystyle \lim_{n\to \infty}x_n=\lim_{n\to \infty}x_{n+1}=a

    a=3(1+a)3+aa=\dfrac{3(1+a)}{3+a},解得 a=1+52a=\dfrac{1+\sqrt{5}}{2}(舍负)

    limnxn=1+52\displaystyle \lim_{n\to \infty}x_n=\dfrac{1+\sqrt{5}}{2}

二、两个重要极限#

1. limx0sinxx=1\displaystyle \lim_{x\to 0}\dfrac{\sin x}{x}=1#

第一个重要极限

证明:先证 limx0+sinxx=1\displaystyle \lim_{x\to 0^+}\dfrac{\sin x}{x}=1

ADC=x\angle ADC=x

SAOB<SAOB<SAOC\because S_\triangle AOB \lt S_扇AOB \lt S_\triangle AOC

12×1×1×sinx<x2π×π×1212tanxsinxxsinxcosxsinxx1sinxxcosxlimx0+cosx=1\begin{align*} \therefore \frac{1}{2}\times 1 \times 1 \times \sin x&\lt \frac{x}{2\pi }\times \pi \times 1^2\le \frac{1}{2}\tan x \\ \sin x&\le x \le \frac{\sin x}{\cos x}\\ \dfrac{\sin x}{x}&\le 1\\ \dfrac{\sin x}{x} &\ge \cos x 且\lim_{x\to 0^+}\cos x = 1\\ \end{align*}

根据夹逼定理,cosxsinxx1\cos x\le \dfrac{\sin x}{x}\le 1limx0+sinxx=1\displaystyle \lim_{x\to 0^+}\dfrac{\sin x}{x}=1

再证明 limx0sinxx=1\displaystyle \lim_{x\to 0^-}\dfrac{\sin x}{x}=1

t=xt=-x

limt0+sin(t)t=limt0+sintt=1\lim_{t\to 0^+}\dfrac{\sin (-t)}{-t}=\lim_{t\to 0^+}\dfrac{\sin t}{t}=1

limx0sinxx=1\displaystyle \lim_{x\to 0^-}\dfrac{\sin x}{x}=1 综上所述,limx0sinxx=1\lim_{x\to 0}\dfrac{\sin x}{x}=1

注:limxsinxx=0\displaystyle \lim_{x\to \infty}\dfrac{\sin x}{x}=0limxx0sinxx=sinx0x0\displaystyle \lim_{x\to x_0}\dfrac{\sin x}{x}=\dfrac{\sin x_0}{x_0}x00x_0\ne 0

例题#

  1. 计算极限值

    limx01cosxx2=limx02sin2x2x2=limx024(sinx2x2)2=12\begin{align} \lim_{x\to 0}\dfrac{1-\cos x}{x^2}&=\lim_{x\to 0}\dfrac{2\sin^2 \frac{x}{2}}{x^2}\nonumber\\ &=\lim_{x\to 0}\dfrac{2}{4}\left(\dfrac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2\nonumber\\ &=\dfrac{1}{2}\nonumber \end{align}
  2. limx0tanxx=limx0(sinxx1cosx)=11=1\displaystyle \lim_{x\to 0}\dfrac{\tan x}{x}=\lim_{x\to 0}\left(\dfrac{\sin x}{x}\cdot \dfrac{1}{\cos x}\right)=1\cdot 1=1

  3. limx0arcsinxx=t=arcsinxlimt0tsint=1\displaystyle \lim_{x\to 0}\dfrac{\arcsin x}{x}\overset{t=\arcsin x}{=} \lim_{t\to 0}\dfrac{t}{\sin t}=1

  4. limxasinxsinaxa=limxa2cosx+a2sinxa22xa2=cosa\displaystyle \lim_{x\to a}\dfrac{\sin x-\sin a}{x-a}=\lim_{x\to a}\dfrac{2\cos \dfrac{x+a}{2}\sin \dfrac{x-a}{2}}{2\cdot \dfrac{x-a}{2}}=\cos a

2. limn(1+1n)n=e\displaystyle \lim_{n\to \infty}(1+\dfrac{1}{n})^n=e#

证明(单调有界原理):

  1. 先证明单调性
\begin{align*} x_n=(1+\dfrac{1}{n})^n&=\underbrace{(1+\dfrac{1}{n})(1+\dfrac{1}{n})\cdots (1+\dfrac{1}{n})}_\text{n个}\times 1 \\ &\le \left[\dfrac{(1+\dfrac{1}{n})(1+\dfrac{1}{n})\cdots (1+\dfrac{1}{n})+1}{n+1}\right]^{n+1}\\ &=\left(\dfrac{n+2}{n+1}\right)^{n+1}=\left(1+\dfrac{1}{n+1}\right)^{n+1}=x_{n+1} \end{align*} $$ 即 $\{x_n\}$ 单调递增 2. 再证明 $\{x_n\}$ 有界

\begin{align*} (1+\dfrac{1}{n})^n&=1+n\times \dfrac{1}{n}+\dfrac{n(n-1)}{2!}\times (\dfrac{1}{n})^2+\dfrac{n(n-1)(n-2)}{3!}\times(\dfrac{1}{n})^3+\cdots +\dfrac{n!}{n!}\times (\dfrac{1}{n})^n\ &\le 1+1+\dfrac{1}{2!}+\dfrac{1}{3!}+\cdots +\dfrac{1}{n!}\ &\lt 1+1+\dfrac{1}{1\times 2}+\dfrac{1}{2\times 3}+\cdots +\dfrac{1}{(n-1)n}\ &=3-\dfrac{1}{n}\lt 3 \end{align*}

即 $\{x_n\}$ 有上界 $\therefore \displaystyle \lim_{n\to \infty}(1+\dfrac{1}{n})^n$ 存在,记为 $e$ #### 例题 1. $\displaystyle \lim_{x\to \infty}(1-\dfrac{1}{x})=\lim_{x\to \infty}\dfrac{1}{(1+\dfrac{1}{-x})^{-x}}=\dfrac{1}{e}$ 2. $\displaystyle \lim_{x\to \infty}(1+\dfrac{1}{x})^{x+1}=\lim_{x\to \infty}(1+\dfrac{1}{x})^x(1+\dfrac{1}{x})=e$ 3. $\displaystyle \lim_{x\to \infty} (1+\dfrac{x}{3})^\frac{1}{x}=\lim_{x\to \infty}\sqrt[3]{(1+\dfrac{x}{3})^{\dfrac{1}{\frac{x}{3}}}}=\sqrt[3]{e}$ 4. $\displaystyle \lim_{x\to \infty}(\dfrac{x-1}{x+3})^x=\lim_{x\to \infty}\left[(1+\dfrac{1}{-\frac{x+3}{4}})^{-\frac{x+3}{4}}\right]^{-4}=e^{-4}$ ## 三、Cauchy审敛原理

{x_n}收敛\Leftrightarrow \forall \epsilon \gt 0\quad \exists N\gt 0\quad m,n\gt N\quad |x_n-x_m|\lt \epsilon

### 例题 证明$x_n=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\cdots +\dfrac{1}{n^2}$ 收敛 > [注:该数列实际收敛于 $\dfrac{\pi^2}{6}(n\to \infty)$] 解:$\forall \epsilon \gt 0$,不妨设$m\gt n$ 有

\begin{align*} |x_m-x_n|&=\left|\dfrac{1}{(n+1)^2}+\dfrac{1}{(n+2)^2}+\cdots +\dfrac{1}{m^2}\right|\ &\lt \dfrac{1}{n(n+1)}+\dfrac{1}{(n+1)(n+2)}+\cdots + \dfrac{1}{(n-1)m}\ &=\dfrac{1}{n}-\dfrac{1}{m}\ &\lt \dfrac{1}{n}(\lt \epsilon) \end{align*}

要使 $|x_n-x_m|\lt \epsilon$,只需 $n\gt \dfrac{1}{\epsilon}$ $\therefore \forall \epsilon \gt 0$,存在 $N=[\dfrac{1}{\epsilon}]$,当 $m,n\gt N$ 时,有 $|x_m-x_n|\lt \epsilon$ 恒成立 $\therefore \{x_n\}$ 收敛
1.6 极限的存在准则和两个重要极限
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00