448 字
2 分钟
1.5 极限的计算

§1.5\S1.5 极限的计算#

一、四则运算#

定理:若 limxx0f(x)=A\displaystyle \lim_{x\to x_0}f(x)=Alimxx0g(x)=B\displaystyle \lim_{x\to x_0}g(x)=B,则有

  • limxx0[f(x)±g(x)]=limxx0f(x)±limxx0g(x)=A±B\displaystyle \lim_{x\to x_0}[f(x)\pm g(x)]=\lim_{x\to x_0}f(x)\pm \lim_{x\to x_0}g(x)=A\pm B
  • limxx0[f(x)g(x)]=limxx0f(x)limxx0g(x)=AB\displaystyle \lim_{x\to x_0}[f(x)g(x)]=\lim_{x\to x_0}f(x)\cdot \lim_{x\to x_0}g(x) = A\cdot B
  • limxx0[f(x)g(x)]=limxx0f(x)limxx0g(x)=AB(B0)\displaystyle \lim_{x\to x_0}\left[\dfrac{f(x)}{g(x)}\right]=\dfrac{\displaystyle \lim_{x\to x_0}f(x)}{\displaystyle \lim_{x\to x_0}g(x)}=\dfrac{A}{B}(B\ne 0)

四则运算定理证明

  1. 加法定则 limxx0[f(x)+g(x)]=limxx0f(x)+limxx0g(x)\displaystyle \lim_{x\to x_0}[f(x)+ g(x)]=\lim_{x\to x_0}f(x)+ \lim_{x\to x_0}g(x)

    证:原命题可化为证明 f(x)+g(x)(A+B)f(x)+g(x)-(A+B) 无穷小 f(x)=A+α(x)g(x)=B+β(x)f(x)=A+\alpha(x) \quad g(x)=B+\beta(x) 原式 =α(x)+β(x)=\alpha(x)+\beta(x),是无穷小量,故 limxx0[f(x)+g(x)AB]=0\displaystyle \lim_{x\to x_0}[f(x)+g(x)-A-B]=0limxx0[f(x)+g(x)]=A+B\displaystyle \lim_{x\to x_0}[f(x)+ g(x)]=A+B,减法定则同理

  2. 乘法定则 limxx0[f(x)g(x)]=limxx0f(x)limxx0g(x)\displaystyle \lim_{x\to x_0}[f(x)g(x)]=\displaystyle \lim_{x\to x_0}f(x)\cdot \displaystyle \lim_{x\to x_0}g(x)

    证:f(x)g(x)=AB+Bα(x)+Aβ(x)+α(x)β(x)三个无穷小量f(x)\cdot g(x)=AB+\underbrace{B\alpha(x)+A\beta(x)+\alpha(x)\beta(x)}_{\text{三个无穷小量}} limxx0[Bα(x)+Aβ(x)+α(x)β(x)]=0\because \displaystyle \lim_{x\to x_0}[B\alpha(x)+A\beta(x)+\alpha(x)\beta(x)]=0 limxx0[f(x)g(x)]=AB=limxx0f(x)limxx0g(x)\therefore \displaystyle \lim_{x\to x_0}[f(x)g(x)]=AB=\lim_{x\to x_0}f(x)\cdot \lim_{x\to x_0}g(x)

  3. 除法定则 limxx0[f(x)g(x)]=limxx0f(x)limxx0g(x)(limxx0g(x)0)\displaystyle \lim_{x\to x_0}\left[\dfrac{f(x)}{g(x)}\right]=\dfrac{\displaystyle \lim_{x\to x_0}f(x)}{\displaystyle \lim_{x\to x_0}g(x)}(\lim_{x\to x_0}g(x)\ne 0)

    证:f(x)g(x)AB=A+αB+βAB=1B(B+β)(BαAβ)\dfrac{f(x)}{g(x)}-\dfrac{A}{B}=\dfrac{A+\alpha}{B+\beta}-\dfrac{A}{B}=\dfrac{1}{B(B+\beta)}(B\alpha - A\beta) ϵ>0δβ0<ϵ\forall \epsilon \gt 0 \quad \exists \delta \quad |\beta-0|\lt \epsilonϵ=B2\epsilon=\dfrac{|B|}{2},则 β<B2|\beta| \lt \dfrac{|B|}{2} B+βBβ>BB2=B2=ϵ|B+\beta |\ge |B| -|\beta |\gt |B|-\dfrac{|B|}{2}=\dfrac{|B|}{2}=\epsilon 1B(B+β)2B2\left|\dfrac{1}{B(B+\beta)}\right|\le \dfrac{2}{|B|^2},即 1B(B+β)\dfrac{1}{B(B+\beta)} 为有界量 limxx0[f(x)g(x)AB]=0limxx0[f(x)g(x)]=AB\therefore \displaystyle \lim_{x\to x_0}[\frac{f(x)}{g(x)}-\frac{A}{B}]=0 \Rightarrow \lim_{x\to x_0}\left[\frac{f(x)}{g(x)}\right]=\frac{A}{B}

  • 有用的推论

    1. limxx0f(x)=Alimxx0cf(x)=climxx0f(x)=cA\displaystyle \lim_{x\to x_0}f(x)=A \Rightarrow \lim_{x\to x_0}c\cdot f(x)=c\cdot \lim_{x\to x_0}f(x)=c\cdot A (cc 为常数)
    2. limxx0f(x)=Alimxx0f(x)n=[limxx0f(x)]n=An\displaystyle \lim_{x\to x_0}f(x)=A \Rightarrow \lim_{x\to x_0}f(x)^n=[\lim_{x\to x_0}f(x)]^n=A^n (nn 为正整数)
    3. limxx0f(x)=Alimxx0\rootn\off(x)=\rootn\oflimxx0f(x)=\rootn\ofA\displaystyle \lim_{x\to x_0}f(x)=A \Rightarrow \lim_{x\to x_0}\root n \of {f(x)}=\root n \of {\lim_{x\to x_0}f(x)}=\root n \of A (A>0A\gt 0f(x)>0f(x)\gt 0nn 为正整数)

    类似性质在数列中也同样适用({xn},{yn},limnxn=A,limnyn=B\{x_n\},\{y_n\},\displaystyle \lim_{n\to \infty}x_n=A,\lim_{n\to \infty}y_n=B)

    1. limn(xn±yn)=limnxn±limnyn=A±B\displaystyle \lim_{n\to \infty}(x_n\pm y_n)=\lim_{n\to \infty}x_n\pm \lim_{n\to \infty}y_n=A\pm B
    2. limn(xnyn)=limnxnlimnyn=AB\displaystyle \lim_{n\to \infty}(x_n\cdot y_n)=\lim_{n\to \infty}x_n\cdot \lim_{n\to \infty}y_n=A B
    3. limnxnyn=limnxnlimnyn=AB\displaystyle \lim_{n\to \infty}\dfrac{x_n}{y_n}=\dfrac{\displaystyle \lim_{n\to \infty}x_n}{\displaystyle \lim_{n\to \infty}y_n} = \dfrac{A}{B},其中 B0B\ne 0yn0(n=1,2,)y_n\ne 0(n=1,2,\cdots)

例 1. Pn(x)=anxn+an1xn1++a1x+a0(an0,nN)P_n(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots +a_1x+a_0 \quad(a_n\ne 0, n\in N^*),求 limxx0Pn(x)\displaystyle \lim_{x\to x_0}P_n(x) 解:

原式=limxx0anxn+limxx0an1xn1++limxx0a1x+limxx0a0=an[limxx0x]n+an1[limxx0x]n1++a1[limxx0x]+a0=anx0n+an1x0n1++a1x0+a0=Pn(x0)\begin{align} 原式&=\lim_{x\to x_0}a_nx^n+\lim_{x\to x_0}a_{n-1}x^{n-1}+\cdots +\lim_{x\to x_0}a_1x+\lim_{x\to x_0}a_0\nonumber \\&=a_n[\lim_{x\to x_0}x]^n+a_{n-1}[\lim_{x\to x_0}x]^{n-1}+\cdots +a_1[\lim_{x\to x_0}x]+a_0\nonumber\\ &=a_nx_0^n+a_{n-1}x_0^{n-1}+\cdots +a_1x_0+a_0\nonumber\\ &=P_n(x_0)\nonumber \end{align}

证明 limxPn(x)=\displaystyle \lim_{x\to \infty}P_n(x)=\infty

考虑limx1Pn(x)=limxx01anxn+limxx0an1xn1++limxx0a1x+limxx0a0=limx1xnan+an11x++a11xn1+a01xn=0an=0\begin{align} 考虑\lim_{x\to \infty}\frac{1}{P_n(x)}&=\lim_{x\to x_0}\frac{1}{a_nx^n+\lim_{x\to x_0}a_{n-1}x^{n-1}+\cdots +\lim_{x\to x_0}a_1x+\lim_{x\to x_0}a_0}\nonumber \\ &=\lim_{x\to \infty}\frac{\frac{1}{x^n}}{a_n+a_{n-1}\frac{1}{x}+\cdots +a_1\frac{1}{x^{n-1}}+a_0\frac{1}{x^n}}\nonumber\\ &=\frac{0}{a_n}=0\nonumber \end{align}

limxPn(x)=\therefore \displaystyle \lim_{x\to \infty}P_n(x)=\infty

例2. (1) limx0x3x25x+6=limx0(x3)limx0(x25x+6)=36=12\displaystyle \lim_{x\to 0}\dfrac{x-3}{x^2-5x+6}=\dfrac{\displaystyle \lim_{x\to 0}(x-3)}{\displaystyle \lim_{x\to 0}(x^2-5x+6)}=\dfrac{-3}{6}=-\dfrac{1}{2}

(2) limx3x3x25x+6=limx31x2=1\displaystyle \lim_{x\to 3}\dfrac{x-3}{x^2-5x+6}=\lim_{x\to 3}\dfrac{1}{x-2}=1

(3) limxx3x25x+6=limx1x2=0\displaystyle \lim_{x\to \infty}\dfrac{x-3}{x^2-5x+6}=\lim_{x\to \infty}\dfrac{1}{x-2}=0

(4) limxx+3x25x+6=limx1x+3x215x+6x2=01=0\displaystyle \lim_{x\to \infty}\dfrac{x+3}{x^2-5x+6}=\lim_{x\to \infty}\dfrac{\frac{1}{x}+\frac{3}{x^2}}{1-\frac{5}{x}+\frac{6}{x^2}}=\dfrac{0}{1}=0

(5)

limxamxm+am1xm1++a1x+a0bnxn+bn1xn1++b1x+b0={0m<nambnm=nm>n\lim_{x\to \infty}\frac{a_mx^m+a_{m-1}x^{m-1}+\cdots +a_1x+a_0}{b_nx^n+b_{n-1}x^{n-1}+\cdots +b_1x+b_0}=\begin{cases}0 \quad m\lt n\\ \frac{a_m}{b_n} \quad m=n\\ \infty \quad m\gt n\end{cases}

(6) [分子有理化]limx+x(x2+1x21)=limx+2xx2+1+x21=limx+2x2+1x2+x21x2=21+1=1\displaystyle \lim_{x\to +\infty}x(\sqrt{x^2+1}-\sqrt{x^2-1})=\lim_{x\to +\infty}\frac{2x}{\sqrt{x^2+1}+\sqrt{x^2-1}}=\lim_{x\to +\infty}\frac{2}{\sqrt{\frac{x^2+1}{x^2}}+\sqrt{\frac{x^2-1}{x^2}}}=\frac{2}{1+1}=1

二、复合运算#

定理:

limuaf(u)=A,limxx0ϕ(x)=alimxx0[f(ϕ(x))]=limuaf(u)=A(ϕ(x)a) \lim_{u\to a}f(u)=A,\lim_{x\to x_0}\phi(x)=a\Rightarrow \lim_{x\to x_0}[f(\phi(x))]=\lim_{u\to a}f(u)=A \quad (\phi(x)\ne a)

例题#

  1. limx1lnxsin1lnxu=lnxlimu0usin1u=0\displaystyle \lim_{x\to 1}\ln x\sin \frac{1}{\ln x}\overset{u=\ln x}{\rightarrow} \lim_{u\to 0}u\sin\frac{1}{u}=0

  2. 计算以下极限

    limx+1+x+xx=limx+(1+x+x)x=1+limx+(x+xx)=1+limx+xx+xx=1+12=62\begin{align*} \lim_{x\to +\infty }\sqrt{1+\sqrt{x+\sqrt{x}}-\sqrt{x}} &=\sqrt{\lim_{x+\infty }(1+\sqrt{x+\sqrt{x}})-\sqrt{x}}\\ &=\sqrt{1+\lim_{x\to +\infty}(\sqrt{x+\sqrt{x}}-\sqrt{x})}\\ &=\sqrt{1+\lim_{x\to +\infty}\frac{\sqrt{x}}{\sqrt{x+\sqrt{x}}-\sqrt{x}}}\\ &=\sqrt{1+\frac{1}{2}}\\ &=\frac{\sqrt{6}}{2} \end{align*}
  3. limx(x2+1x+1axb)=1\displaystyle \lim_{x\to \infty}(\dfrac{x^2+1}{x+1}-ax-b)=1,求a、b

    解:原式 =limxx2+1(ax+b)(x+1)x+1=limx(1a)x2(a+b)x+(1b)x+1=1\displaystyle =\lim_{x\to \infty}\dfrac{x^2+1-(ax+b)(x+1)}{x+1}=\lim_{x\to \infty}\dfrac{(1-a)x^2-(a+b)x+(1-b)}{x+1}=1{1a=0a+b=1\begin{cases}1-a=0\\-a+b=1\end{cases},可得 {a=1b=2\begin{cases}a=1\\b=-2\end{cases}

1.5 极限的计算
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00