869 字
4 分钟
10.3 格林公式及其应用

§10.3\S10.3 格林公式及其应用#

定义#

  • 单连通区域(“无洞”区域)
  • L的方向
    L的正向L的负向L1和L2正向如图

定理(格林公式)#

  • D单连通
  • L正向
  • P、Q一阶偏导连续
  • 则有 Pdx+Qdy=DxyPQdxdy=D(QxPy)dxdy\oint P \mathrm dx+ Q \mathrm dy = \iint_D \left |\begin{matrix}\dfrac{\partial}{\partial x} & \dfrac{\partial }{\partial y} \\ P & Q \\ \end{matrix} \right | \mathrm dx \mathrm dy=\iint_D(\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y})\mathrm dx \mathrm dy

推广#

  1. σ=D1dσ=LPdx+Qdy=Lxdy(Q=x,P=0)\sigma = \iint_D 1 \mathrm d\sigma = \oint_L P \mathrm dx+Q \mathrm dy=\oint_L x \mathrm dy(Q=x,P=0)

    • Q=x2Q=\dfrac{x}{2}P=y2P=-\dfrac{y}{2}σ=12Lxdyydx\sigma=\dfrac{1}{2}\oint_L x \mathrm dy-y \mathrm dx
  2. D复联通,L正向,P、Q一阶偏导连续,则 LPdx+Qdy=D(QxPy)dxdy\oint_L P \mathrm dx + Q \mathrm dy = \iint_D (\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y})\mathrm dx \mathrm dy

  3. 平面曲线积分(II类)与路径无关的条件

    • 定理1:D单连通,P、Q一阶偏导连续:

      Qx=PyD内处处成立LPdx+QdyD内与路径无关LPdx+Qdy=0Pdx+Qdyu(x,y)的全微分(即du=Pdx+Qdyuy=Qux=P\begin{align*} &\dfrac{\partial Q}{\partial x}=\dfrac{\partial P}{\partial y} 在 D 内处处成立 \\ &\Leftrightarrow \int_LP \mathrm dx + Q \mathrm dy 在 D 内与路径无关 \\ &\Leftrightarrow \oint_L P \mathrm dx + Q \mathrm dy = 0\\ &\Leftrightarrow P \mathrm dx + Q\mathrm dy 是 u(x,y) 的全微分(即 \mathrm du = P\mathrm dx+Q \mathrm dy,\dfrac{\partial u}{\partial y}=Q,\dfrac{\partial u}{\partial x}=P) \end{align*}
    • 定理2:P、Q连续,(x1,y1)(x2,y2)Pdx+Qdy=u(x2,y2)u(x1,y1)\int_{(x_1,y_1)}^{(x_2,y_2)}P \mathrm dx + Q\mathrm dy=u(x_2,y_2)-u(x_1,y_1),其中 u(x,y)u(x,y) 是原函数

    • 定理3:D是一个具有n个“洞”的复连通区域,外部L,内部 l1,,lnl_1,\cdots,l_n,P、Q一阶偏导连续且 Qx=Py\dfrac{\partial Q}{\partial x}=\dfrac{\partial P}{\partial y},则

      LPdx+Qdy=i=1nliPdx+QdyL+LPdx+Qdy=D(QxPy)dxdy=0LPdx+Qdy=lPdx+Qdy\begin{align*} \oint_LP \mathrm dx+Q \mathrm dy &= \sum_{i=1}^n \oint{l_i}P \mathrm dx + Q \mathrm dy\\ \oint_{L+L^-}P\mathrm dx+Q \mathrm dy &= \iint_D(\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y})\mathrm dx \mathrm dy=0\\ \Rightarrow \oint_L P\mathrm dx+Q \mathrm dy &= \oint_l P\mathrm dx+Q \mathrm dy \end{align*}

例题#

  1. I=L4xydx+3x2dyI=\oint_L 4xy \mathrm dx + 3x^2 \mathrm dyL:0y2L:0\le y \le 21x3-1\le x \le 3 的正向边界

    解:

    I=D(6x4x)dxdy=2Dxdxdy=213dx02xdy=2(13xdx)(02dy)=16\begin{align*} I&=\iint_D (6x-4x)\mathrm dx \mathrm dy\\ &=2\iint_D x \mathrm dx \mathrm dy\\ &=2\int_{-1}^3 \mathrm dx\int_0^2 x \mathrm dy\\ &=2(\int_{-1}^3 x \mathrm dx)(\int_0^2 \mathrm dy)\\ &=16 \end{align*}
  2. I=L(x3excosy)dx+(exsiny+4x)dyI=\int_L (x^3-e^x\cos y)\mathrm dx + (e^x \sin y+4x)\mathrm dyL:x2+(y1)2=1L:x^2+(y-1)^2=1,右半圆顺时针

    解:L=L+lL'=L+l

    L(x3excosy)dx+(exsiny+4x)dy=D[exsiny+4+exsiny)]dxdy=4Ddxdy=412π12=2π\begin{align*} &\int_{L'}(x^3-e^x\cos y)\mathrm dx + (e^x\sin y+4x)\mathrm dy\\ &=-\iint_D [e^x\sin y+4+e^x-\sin y)]\mathrm dx \mathrm dy\\ &=-4\iint_D \mathrm dx \mathrm dy \\ &=-4\cdot \dfrac{1}{2}\cdot \pi \cdot 1^2\\ &=-2\pi \end{align*}

    l:x=0,y:02l:x=0, y:0\to 2

    l=02sinydy=1cos2\int_l = \int_0^2 \sin y \mathrm dy = 1-\cos 2

    I=2π(1cos2)=2π+cos21I=-2\pi -(1-\cos 2)=-2\pi + \cos 2 - 1

  3. I=LxdyI=\int_L x \mathrm dyL:x2+y2=1L:x^2+y^2=1x0,y0x\ge 0,y\ge 0,顺时针

    解:添加 l1l_1l2l_2,构成封闭 L=L+l1+l2L'=L+l_1+l_2,反向

    Lxdy=D(10)dxdy=14π\int_{L'}x \mathrm dy = -\iint_D(1-0)\mathrm dx \mathrm dy=-\dfrac{1}{4}\pi

    l2xdy=010dy=0\int_{l_2} x \mathrm dy = \int_0^1 0 \mathrm dy=0

    l1xdy=01x0dx=0\int_{l_1} x \mathrm dy = \int_0^1 x\cdot 0 \mathrm dx = 0

    I=14π\therefore I=-\dfrac{1}{4}\pi

  4. I=L(2xcosyy2sinx)dx+(2ycosxx2siny)dyI=\int_L(2x\cos y-y^2\sin x)\mathrm dx + (2y\cos x-x^2\sin y)\mathrm dyL:y=x2(0,0)(1,1)L:y=x^2 (0,0)\to (1,1)

    解:

    • 【法一】I=01[(2xcosx2x4sinx)1+(2x2cosxx2sinx2)2x]dx=2cos1I=\int_0^1 [(2x\cos x^2 - x^4\sin x)\cdot 1+(2x^2\cos x-x^2 \sin x^2)\cdot 2x]\mathrm dx = 2\cos 1

    • 【法二】

      Py=2xsiny2ysinx=Qx\because \dfrac{\partial P}{\partial y}=-2x\sin y-2y\sin x=\dfrac{\partial Q}{\partial x}

      I\therefore I 与路径无关

      I=Il1+Il2=01(2ycos002siny)dy+01(2xcos112sinx)dx=1+2cos11=2cos1\begin{align*} I&=I_{l_1}+I_{l_2}\\ &=\int_0^1 (2y\cos 0-0^2\sin y)\mathrm dy + \int_0^1 (2x\cos 1-1^2\sin x)\mathrm dx\\ &=1+2\cos 1-1\\ &=2\cos 1 \end{align*}

      (其中 l1:x=0,y:01l_1:x=0,y:0\to 1l2:y=1,x:01l_2:y=1,x:0\to 1

    • 【法三】

      P=2xcosyy2sinx=uxP=2x\cos y -y^2\sin x=\dfrac{\partial u}{\partial x}

      u=(2xcosyy2sinx)dx=x2cosy+y2cosx+ϕ(y)u=\int(2x\cos y-y^2\sin x)\mathrm dx=x^2\cos y +y^2\cos x+\phi(y)

      uy=2ycosxx2sinyϕ(y)=C\dfrac{\partial u}{\partial y}=2y\cos x-x^2\sin y\Rightarrow \phi(y)=C

      u(x,y)=x2cosy+y2cosx+C\therefore u(x,y)=x^2\cos y+y^2\cos x+C

      I=u(1,1)u(0,0)=cos1+cos1=2cos1I=u(1,1)-u(0,0)=\cos 1+\cos 1=2\cos 1

  5. I=Lydxxdyx2+y2I=\int_L \dfrac{y \mathrm dx - x\mathrm dy}{x^2+y^2}L:x2+y2=1L:x^2+y^2=1y0y\ge 0(1,0)(1,0)(-1,0)\to (1,0)

    解:

    • 【法一】

      L:{x=costy=sint,t:π0L:\begin{cases}x=\cos t\\y=\sin t\end{cases}, t:\pi\to 0

      I=π0[sint(sint)costcost]dt=1π0dt=π\displaystyle I=\int_\pi^0[\sin t(-\sin t)-\cos t\cdot \cos t]\mathrm dt=-1\int_\pi^0 \mathrm dt = \pi

    • 【法二】

      P=yx2+y2P=\dfrac{y}{x^2+y^2}Q=xx2+y2Q=-\dfrac{x}{x^2+y^2}Qx=x2y2(x2+y2)2=Py\dfrac{\partial Q}{\partial x}=\dfrac{x^2-y^2}{(x^2+y^2)^2}=\dfrac{\partial P}{\partial y}

      \therefore 积分与路径无关

      选择L:(1,0)(1,1)(1,1)(1,0)L:(-1,0)\to(-1,1)\to(1,1)\to(1,0)【不能包含 (0,0)(0,0)—— (0,0)(0,0) 处无定义】

      l1:y:01,x=1l_1: y:0\to 1, x=-1Il1=0111+y21dy=arctany01=π2I_{l_1}=\int_0^1\dfrac{1}{1+y^2}\cdot 1 \mathrm dy = \arctan y|_0^1=\dfrac{\pi}{2}

      l2:x:11,y=1l_2:x:-1\to 1, y=1Il2=1111+x21dx=arctanx11=0I_{l_2}=\int_{-1}^1\dfrac{1}{1+x^2}\cdot 1 \mathrm dx=\arctan x|_{-1}^1=0

      l3:y:10,x=1l_3:y:1\to 0, x=1Il3=1011+y21dy=π2I_{l_3}=\int_1^0 \dfrac{-1}{1+y^2}\cdot 1 \mathrm dy=\dfrac{\pi}{2}

      I=π2+π2=πI=\dfrac{\pi}{2}+\dfrac{\pi}{2}=\pi

    • 【法三】

      I=LydxxdyI=\int_L y \mathrm dx-x \mathrm dy,添加 y=0,x:11y=0, x:1\to -1

      封闭 L=L+lL'=L+l,负向

      Lydxxdy=D[(1)1]dxdy=2Ddxdy=π\oint_L' y \mathrm dx - x \mathrm dy=-\iint_D[(-1)-1]\mathrm dx \mathrm dy=2\iint_D \mathrm dx \mathrm dy=\pi

      I=πL(ydxxdy)=π110dx=π\displaystyle I=\pi-\int_L (y \mathrm dx-x \mathrm dy)=\pi - \int_{1}^{-1}0 \mathrm dx = \pi

  6. I=Lydxxdyx2+y2I=\oint_L \dfrac{y \mathrm dx - x\mathrm dy}{x^2+y^2},L正向且不包含 (0,0)(0,0)

    解:

    P=yx2+y2P=\dfrac{y}{x^2+y^2}Q=xx2+y2Q=-\dfrac{x}{x^2+y^2}(0,0)(0,0) 处无定义,Qx=Py(x,y)(0,0)\dfrac{\partial Q}{\partial x}=\dfrac{\partial P}{\partial y}\quad (x,y)\ne(0,0)

    • L 包含原点:I=0I=0
    • L 不包含原点:设 ll 为正向足够小的圆(x2+y2=ϵ2x^2+y^2=\epsilon^2I=Lydxxdyx2+y2=1ϵ2Lydxxdy=1ϵ2(2)πϵ2=2πI=\oint_L \dfrac{y \mathrm dx-x \mathrm dy}{x^2+y^2}=\dfrac{1}{\epsilon^2}\oint_L y \mathrm dx - x \mathrm dy=\dfrac{1}{\epsilon^2}\cdot (-2)\pi\epsilon^2=-2\pi
  7. I=Lydx+(x1)dy(x1)2+y2I=\int_L \dfrac{-y \mathrm dx + (x-1)\mathrm dy}{(x-1)^2+y^2}L:y=x22xL:y=x^2-2x(0,0)(4,8)(0,0)\to (4,8)

解:

  • 【折线法】

    P=y(x1)2+y2P=-\dfrac{y}{(x-1)^2+y^2}Q=x1(x1)2+y2Q=\dfrac{x-1}{(x-1)^2+y^2}

    Py=Qx=1(x1)2+y2(x,y)(1,0)\dfrac{\partial P}{\partial y}=\dfrac{\partial Q}{\partial x}=-\dfrac{1}{(x-1)^2+y^2}\quad(x,y)\ne(1,0)

    选择 (0,0)(0,1)(4,1)(4,8)(0,0)\to(0,-1)\to(4,-1)\to(4,8)

    l1:(0,0)(0,1)x=0y:01l_1:(0,0)\to(0,-1)\quad x=0\quad y:0\to-1Il1=011y2+1dy=π4I_{l_1}=\int_0^{-1}\dfrac{-1}{y^2+1}\mathrm dy=\dfrac{\pi}{4}

    l2:y=1x:04l_2:y=-1\quad x:0\to 4Il2=0411+(x1)2dx=arctan3+π4I_{l_2}=\int_0^4\dfrac{1}{1+(x-1)^2}\mathrm dx=\arctan 3+\dfrac{\pi}{4}

    l3:x=4y:18l_3:x=4\quad y:-1\to 8Il3=13332+y2dy=131811+(y3)2dy=13×31811+(y3)2d(y3)=arctan83+arctan13I_{l_3}=\int_{-1}^3\dfrac{3}{3^2+y^2}\mathrm dy=\dfrac{1}{3}\int_{-1}^8\dfrac{1}{1+(\frac{y}{3})^2}\mathrm dy=\dfrac{1}{3}\times 3\int_{-1}^8\dfrac{1}{1+(\frac{y}{3})^2}\mathrm d(\dfrac{y}{3})=\arctan\dfrac{8}{3}+\arctan\dfrac{1}{3}

    I=Il1+Il2+Il3=π2+arctan3+arctan83+arctan13I=I_{l_1}+I_{l_2}+I_{l_3}=\dfrac{\pi}{2}+\arctan 3+\arctan\dfrac{8}{3}+\arctan\dfrac{1}{3}

  • L=l1+l2+LL'=l_1+l_2+Ll3:(x1)2+y2=ϵ2l_3:(x-1)^2+y^2=\epsilon^2(逆时针,ϵ\epsilon 足够小)

    LPdx+Qdy=l3Pdx+Qdy=1ϵ2l3ydx+(x1)dy=1ϵ2D[1(1)]dxdy=2π\begin{align*} \oint_{L'}P \mathrm dx+Q \mathrm dy&=\oint_{l_3}P \mathrm dx+Q \mathrm dy\\ &=\dfrac{1}{\epsilon ^2}\oint_{l_3}-y \mathrm dx + (x-1)\mathrm dy\\ &=\dfrac{1}{\epsilon ^2}\iint_D[1-(-1)]\mathrm dx \mathrm dy\\ &=2\pi \end{align*} l1Pdx+Qdy=408(x1)2+82dx=arctanx1804=arctan38+arctan18\begin{align*} &\oint_{l_1}P \mathrm dx+Q \mathrm dy\\ &=\int_4^0\dfrac{-8}{(x-1)^2+8^2}\mathrm dx\\ &=\arctan \dfrac{x-1}{8}|_0^4\\ &=\arctan\dfrac{3}{8}+\arctan\dfrac{1}{8} \end{align*} l2Pdx+Qdy=8011+y2dy=arctany08=arctan8\begin{align*} &\oint_{l_2}P \mathrm dx+Q \mathrm dy\\ &=\int_8^0\dfrac{1}{1+y^2}\mathrm dy\\ &=\arctan y|_0^8\\ &=\arctan 8 \end{align*}

    I=2πarctan38arctan18arctan8I=2\pi-\arctan\dfrac{3}{8}-\arctan\dfrac{1}{8}-\arctan 8

10.3 格林公式及其应用
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00