690 字
3 分钟
10.2 对坐标的曲线积分(II类曲线积分)

§10.2\S10.2 对坐标的曲线积分(II类曲线有向积分)#

引例:变力沿曲线做功

L:ABL:A\to B

F(x,y)=P(x,y)i+Q(x,y)j=(P(ξi,ηi),Q(ξi,ηi))\begin{align*} \vec{F}(x,y)&=P(x,y)\vec{i}+Q(x,y)\vec{j}\\ &=(P(\xi_i,\eta_i),Q(\xi_i, \eta_i)) \end{align*}WiFiMi1Mi=(Pi,Qi)(Δxi,Δyi)=PiΔxi+QiΔyi\begin{align*} W_i&\approx \vec{F_i}\cdot \vec{M_{i-1}M_i}\\ &=(P_i,Q_i)\cdot (\Delta x_i,\Delta y_i)\\ &=P_i\Delta x_i + Q_i\Delta y_i \end{align*}

W=limλ0n=1(PiΔxi+QiΔyi)W=\displaystyle \lim_{\lambda \to 0}\sum_{n=1}^\infty (P_i\Delta x_i + Q_i\Delta y_i)

定义#

设 L 为 xoy 平面内从 A 到 B 的一条有向光滑曲线,P(x,y)为定义在L上的有界函数,若对L任意分割和取点 (ξi,ηi)(\xi_i,\eta_i),极限 limλ0k=1nP(ξi,ηi)Δxi\displaystyle \lim_{\lambda \to 0}\sum_{k=1}^nP(\xi_i,\eta_i)\Delta x_i 都存在,则称此极限为 P(x,y)P(x,y) 在有向曲线弧 L 上对坐标 x 的曲线积分,记作 LP(x,y)dx\displaystyle \int_L P(x,y) \mathrm dx。类似地,定义 LQ(x,y)dy=limλ0k=1nQ(ξi,ηi)Δyi\displaystyle \int_L Q(x,y) \mathrm dy=\lim_{\lambda \to 0}\sum_{k=1}^nQ(\xi_i,\eta_i)\Delta y_i

LP(x,y)dx+Q(x,y)dy=LP(x,y)dx+LQ(x,y)dy=LFdl\begin{align*} \int_L P(x,y)\mathrm dx + Q(x,y) \mathrm dy &= \int_L P(x,y)\mathrm dx + \int_L Q(x,y) \mathrm dy\\ &=\int_L \vec{F}\cdot \mathrm d\vec{l} \end{align*}

Γ\Gamma 为空间有向曲线弧,则有

ΓP(x,y,z)dx+ΓQ(x,y,z)dy+ΓR(x,y,z)dz=ΓFdl\begin{align*} \int_\Gamma P(x,y,z)\mathrm dx + \int_\Gamma Q(x,y,z) \mathrm dy + \int_\Gamma R(x,y,z)\mathrm dz = \int_\Gamma \vec{F}\cdot \mathrm d\vec{l} \end{align*}

性质#

  • 若 L 可分成 k 条有向光滑曲线弧 Li(i=1,2,,k)L_i(i=1,2,\cdots,k),则 LP(x,y)dx+Q(x,y)dy=i=1kLiP(x,y)dx+Q(x,y)dy\int_L P(x,y)\mathrm dx + Q(x,y) \mathrm dy = \sum_{i=1}^k \int_{L_i} P(x,y) \mathrm dx + Q(x,y) \mathrm dy
  • L(a1p1+a2p2)dx=a1Lp1dx+a2Lp2dx\int_L(a_1p_1+a_2p_2)\mathrm dx = a_1\int_L p_1 \mathrm dx + a_2\int_L p_2 \mathrm dx
  • L:ABL:BAL:A\to B \Rightarrow L^-:B\to ALP(x,y)dx+Q(x,y)dy=LP(x,y)dx+Q(x,y)dy\int_{L^-}P(x,y)\mathrm dx + Q(x,y) \mathrm dy = -\int_L P(x,y)\mathrm dx + Q(x,y)\mathrm dy
    • II 类曲线积分必须注意积分弧段的方向

计算#

定理:P(x,y)P(x,y)Q(x,y)Q(x,y)L:{x=ϕ(t)y=ψ(t),t:αβL:\begin{cases}x=\phi(t)\\y=\psi(t)\end{cases},t:\alpha\to\beta 上连续,且 ϕ2(t)+ψ2(t)0\phi'^2(t)+\psi'^2(t)\ne 0,则 LPdx+Qdy=αβ[P(ϕ,ψ)ϕ+Q(ϕ,ψ)ψ]dt\int_LP \mathrm dx+Q \mathrm dy=\int_\alpha^\beta[P(\phi,\psi)\phi'+Q(\phi,\psi)\psi']\mathrm dt

  • Γ:{x=ϕ(t)y=ψ(t)z=ω(t)\Gamma:\begin{cases}x=\phi(t)\\y=\psi(t)\\z=\omega(t)\end{cases}ΓPdx+Qdy+Rdz=αβ[P(ϕ,ψ,ω)ϕ+Q(ϕ,ψ,ω)ψ+R(ϕ,ψ,ω)ω]dt\int_\Gamma P \mathrm dx + Q \mathrm dy + R \mathrm dz =\int_\alpha^\beta [P(\phi,\psi,\omega)\phi'+Q(\phi,\psi,\omega)\psi'+R(\phi,\psi,\omega)\omega']\mathrm dt
  • L:y=ϕ(x),x:abL:y=\phi(x), x:a\to bLPdx+Qdy=ab[P(x,ϕ(x))1+Q(x,ϕ(x))ϕ(x)]dx\int_L P \mathrm dx + Q \mathrm dy = \int_a^b[P(x,\phi(x))\cdot 1+Q(x,\phi(x))\phi'(x)]\mathrm dx
    • L1:y=a,x:bcL_1:y=a, x:b\to cL1Pdx+Qdy=bcP(x,a)1+Q(x,a)0dx=bcP(x,a)dx\int_{L_1}P \mathrm dx + Q \mathrm dy = \int_b^cP(x,a)\cdot 1+Q(x,a)\cdot 0 \mathrm dx = \int_b^cP(x,a)\mathrm dx
  • L:x=ψ(y),y:cdL:x=\psi(y), y:c\to dLPdx+Qdy=cd[P(ψ(y),y)dψ(y)+Q(ψ(y),y)1]dy\int_L P \mathrm dx + Q \mathrm dy=\int_c^d[P(\psi(y),y)\mathrm d\psi'(y)+Q(\psi(y),y)\cdot 1] \mathrm dy
    • L2:x=d,y:mnL_2:x=d, y:m\to nL2Pdx+Qdy=mnQ(d,y)dy\int_{L_2}P \mathrm dx + Q \mathrm dy = \int_m^n Q(d,y)\mathrm dy

例题#

  1. I=LxydxI=\int_L xy \mathrm dxL:y2=x[(1,1)(1,1)]L:y^2=x\quad[(1,-1)\to(1,1)]

    解:

    法1:l1:y=xx:10l_1:y=-\sqrt{x}\quad x:1\to 0l2:y=xx:01l_2:y=\sqrt{x}\quad x:0\to 1

    I=L1xydx+L2xydx=10x(x)1dx+01xx1dx=45\begin{align*} I&=\int_{L_1}xy \mathrm dx + \int_{L_2}xy \mathrm dx\\ &=\int_1^0x(-\sqrt{x})\cdot 1 \mathrm dx + \int_0^1 x\sqrt{x}\cdot 1 \mathrm dx\\ &=\dfrac{4}{5} \end{align*}

    法2:L:x=y2y:11L:x=y^2\quad y:-1\to 1

    I=11y2y2ydy=11y4dy=45\begin{align*} I&=\int_{-1}^1y^2\cdot y\cdot 2y \mathrm dy\\ &=\int_{-1}^1y^4 \mathrm dy\\ &=\dfrac{4}{5} \end{align*}
  2. I=xydxI=\oint xy \mathrm dxL:(xa)2+y2=a2L:(x-a)^2+y^2=a^2a>0a\gt 0y>0y\gt 0,逆时针)

    解:L1:{x=a+acosty=asintt:0πL_1:\begin{cases}x=a+a\cos t\\y=a\sin t\end{cases}\quad t:0\to \piL2:y=0,x:02aL_2:y=0,x:0\to 2a

    I=L1xydx+L2xydx=0π(a+acost)asint(asint)dt+02ax0dx=πa32\begin{align*} I&=\int_{L_1}xy \mathrm dx + \int_{L_2}xy \mathrm dx\\ &=\int_0^\pi(a+a\cos t)a\sin t(-a\sin t)\mathrm dt + \int_0^{2a}x\cdot 0 \mathrm dx\\ &=-\dfrac{\pi a^3}{2} \end{align*}
  3. L2xydx(3x+y)dy\int_L 2xy \mathrm dx - (3x+y) \mathrm dyL:(0,0)(1,1)L:(0,0)\to (1,1)

    • y=x2y=x^2
      • x:01,dy=2xdxx:0\to 1, \mathrm dy = 2x \mathrm dxI=01[2xx21(3x+x2)2x]dx=2I=\int_0^1[2x\cdot x^2 \cdot 1-(3x+x^2)\cdot 2x]\mathrm dx=-2
    • x=y2x=y^2
      • y:01,dx=2ydyy:0\to 1, \mathrm dx = 2y \mathrm dyI=01[2y2y2y(3y2+y)1]dy=710I=\int_0^1[2y^2\cdot y \cdot 2y-(3y^2+y)\cdot 1]\mathrm dy=-\dfrac{7}{10}
    • (0,0)(0,1)(1,1)(0,0)\to (0,1)\to (1,1)
      • L1:x=0,y:01L_1:x=0,y:0\to 1L2:y=1,x:01L_2:y=1,x:0\to 1I=IL1+IL2=01[20y0(30+y)]dy+01[2x1(3x+1)0]dx=12+1=12I=I_{L_1}+I_{L_2}=\int_0^1[2\cdot 0 \cdot y \cdot 0-(3\cdot 0+y)]\mathrm dy + \int_0^1[2x\cdot 1-(3x+1)\cdot 0]\mathrm dx=-\dfrac{1}{2}+1=\dfrac{1}{2}
  4. Γxydx+yzdy+zxdz\int_\Gamma xy \mathrm dx + yz \mathrm dy + zx \mathrm dzΓ:A(3,2,1)B(0,0,0)\Gamma: A(3,2,1)\to B(0,0,0)

    解:AB\vec{AB} 所在直线的方程为

    x030=y020=z010=t\begin{align*} \dfrac{x-0}{3-0}=\dfrac{y-0}{2-0}=\dfrac{z-0}{1-0}=t \end{align*}

    {x=3ty=2tz=tt=10\begin{align*} \begin{cases} x=3t\\ y=2t\\ z=t \end{cases}\quad t=1\to 0 \end{align*} I=10[3t2t3+2tt2+t3t1]dt=253\begin{align*} I&=\int_1^0[3t\cdot 2t\cdot 3+2t\cdot t\cdot 2+t\cdot 3t\cdot 1]\mathrm dt\\ &=-\dfrac{25}{3} \end{align*}
  5. Γ(zy)dx+(xz)dy+(xy)dz\int_\Gamma (z-y)\mathrm dx + (x-z)\mathrm dy + (x-y)\mathrm dzΓ:{x2+y2=1xy+z=2\Gamma: \begin{cases}x^2+y^2=1\\x-y+z=2\end{cases}(方向:从z轴正向看为顺时针)

    解:Γ:{x=costy=sintz=2cost+sintt:2π0\Gamma: \begin{cases}x=\cos t\\y=\sin t\\z=2-\cos t+\sin t\end{cases}\quad t:2\pi \to 0

    I=2π0{(2cost+sintsint)(sint)+[cost(2cost+sint)]cost+(costsint)(sint+cost)}dt=2π\begin{align*} I&=\int_{2\pi}^0\{(2-\cos t+\sin t-\sin t)(-\sin t)+[\cos t-(2-\cos t+\sin t)]\cos t+(\cos t-\sin t)(\sin t+\cos t)\}\mathrm dt\\ &=-2\pi \end{align*}
  6. L(y)dxxdy\int_L(-y)\mathrm dx _ x \mathrm dyL:x2+y2=a2(a>0)L:x^2+y^2=a^2(a\gt 0)y0y\ge 0,顺时针

    解:

    • 法1:{x=acosty=asintt:π0\begin{cases}x=a\cos t\\y=a\sin t\end{cases}\quad t:\pi\to 0I=π0[(asint)(asint)+acostacost]dt=a2π0dt=πa2I=\int_\pi^0[(-a\sin t)\cdot (-a\sin t)+a\cos t\cdot a\cos t]\mathrm dt=a^2\int_\pi^0 \mathrm dt = -\pi a^2
    • 法2:I=L(ycosα+xcosβ)dsI=\int_L(-y\cos \alpha+x\cos\beta)\mathrm ds,其中
      • cosα=asinta2sin2t+a2cos2t=sint=ya\cos\alpha=\dfrac{-a\sin t}{\sqrt{a^2\sin^2t+a^2\cos^2t}}=\sin t=\dfrac{y}{a}
      • cosβ=acosta=cost=xa\cos\beta=-\dfrac{a\cos t}{a}=-\cos t=-\dfrac{x}{a}
      • 故原式 =1aL(x2+y2)ds=aLds=πa2=-\dfrac{1}{a}\int_L(x^2+y^2)\mathrm ds=-a\int_L \mathrm ds = -\pi a^2

两类曲线积分的关系

[有向L]LPdx+Qdy=[无向L]L(Pcosα+Qcosβ)ds[有向L]\int_LP \mathrm dx+Q \mathrm dy=[无向L]\int_L(P\cos \alpha+Q\cos \beta)\mathrm ds

  • dx=cosαds\mathrm dx = \cos\alpha \mathrm dscosα=dxds=±ϕϕ2+ψ2\cos\alpha=\dfrac{\mathrm dx}{\mathrm ds}=\pm \dfrac{\phi'}{\sqrt{\phi'^2+\psi'^2}}
  • dy=cosβds\mathrm dy=\cos\beta \mathrm dscosβ=dyds=±ψϕ2+ψ2\cos\beta=\dfrac{\mathrm dy}{\mathrm ds}=\pm \dfrac{\psi'}{\sqrt{\phi'^2+\psi'^2}}
  • ds=ϕ2+ψ2dt\mathrm ds=\sqrt{\phi'^2+\psi'^2}|\mathrm dt|

t:αβ{αβ取“+αβ取“t:\alpha\to\beta\quad \begin{cases}\alpha\le\beta\quad 取“+”\\\alpha\ge\beta\quad取“-”\end{cases}

10.2 对坐标的曲线积分(II类曲线积分)
https://gitee.com/jason_ren/advanced-math-note
作者
Jason Ren
发布于
2025-12-03
许可协议
CC BY-SA 4.0

部分信息可能已经过时

封面
Music
Artist
封面
Music
Artist
0:00 / 0:00